11 resultados para Crimping
Resumo:
"June 1968."
Resumo:
No actual contexto macroeconómico, a melhoria dos processos e o aproveitamento de todas as sinergias, são factores que se tornaram ainda mais importantes e nalguns casos, condição sine qua non para a sobrevivência das próprias empresas. Cada vez mais as empresas são obrigadas a produzir mais com menos recursos, com a qualidade desejada pelos clientes e a preços competitivos. A qualidade do produto final não deve ser afectada com a desculpa da implementação de uma política da redução de custos. Pelo contrário, deve existir a preocupação de eliminar da cadeia de valor tudo o que não contribui com valor acrescentado, melhorando nalguns casos a própria qualidade do produto final. A realização deste projecto tem como objectivo, analisar e implementar, através de ferramentas relacionadas com a metodologia Lean, melhorias na produção de aplicadores de cravação numa empresa multinacional ligada ao ramo automóvel. Pretende-se um aumento da taxa de produção diária em 50%, obtida essencialmente através do balanceamento dos recursos humanos e no desenvolvimento de um sistema kanban incorporado no sector produtivo. A parte inicial do trabalho incidiu no estudo e análise do produto e respectivo processo produtivo. Posteriormente e por várias fases efectuaram-se análises aos tempos de fabrico e ao sequenciamento das operações, com vista ao conhecimento de todo o processo de montagem de modo a identificar os aspectos de melhoria. Após o registo dos pontos a eliminar e/ou a melhorar, procedeu-se a uma análise criteriosa dos dados recolhidos, efectuando-se o balanceamento dos recursos de modo a tornar eficaz a implementação do sistema kanban. Este sistema é a base da melhoria proposta para este tema de dissertação. Após implementação do sistema kanban, foi avaliado o seu desempenho e foram registadas melhorias na produção diária dos aplicadores bem como no lead time despendido no processamento dos mesmos.
Resumo:
Background: Chronic venous insufficiency (CVI) represents a major global health problem with increasing prevalence and morbidity. CVI is due to an incompetence of the venous valves, which causes venous reflux and distal venous hypertension. Several studies have focused on the replacement of diseased venous valves using xeno- and allogenic transplants, so far with moderate success due to immunologic and thromboembolic complications. Autologous cell-derived tissue-engineered venous valves (TEVVs) based on fully biodegradable scaffolds could overcome these limitations by providing non-immunogenic, non-thrombogenic constructs with remodeling and growth potential. Methods: Tri- and bicuspid venous valves (n=27) based on polyglycolic acid-poly-4-hydroxybutyrate composite scaffolds, integrated into self-expandable nitinol stents, were engineered from autologous ovine bone-marrow-derived mesenchymal stem cells (BM-MSCs) and endothelialized. After in vitro conditioning in a (flow) pulse duplicator system, the TEVVs were crimped (n=18) and experimentally delivered (n=7). The effects of crimping on the tissue-engineered constructs were investigated using histology, immunohistochemistry, scanning electron microscopy, grating interferometry (GI), and planar fluorescence reflectance imaging. Results: The generated TEVVs showed layered tissue formation with increasing collagen and glycosaminoglycan levels dependent on the duration of in vitro conditioning. After crimping no effects were found on the MSC level in scanning electron microscopy analysis, GI, histology, and extracellular matrix analysis. However, substantial endothelial cell loss was detected after the crimping procedure, which could be reduced by increasing the static conditioning phase. Conclusions: Autologous living small-diameter TEVVs can be successfully fabricated from ovine BM-MSCs using a (flow) pulse duplicator conditioning approach. These constructs hold the potential to overcome the limitations of currently used non-autologous replacement materials and may open new therapeutic concepts for the treatment of CVI in the future.
Resumo:
The behavioral repertory of Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) workers marked by size category was studied during the preparation of the leaf substrate in the laboratory. The workers were marked according to three physical castes, i.e., minima, generalist and forager. Seven types of behavioral acts were recorded for each caste, with the following frequencies: licking leaf fragments (64.6%), holding fragments on the surface of the fungus garden (16.4%), shredding the fragments (6.0%), chewing and crimping the edges of the fragments (9.0%), incorporating the fragments (2.7%), touching the surface of the fungus with their mandibles and other mouthparts after incorporation (0.3%), and depositing fecal fluid (0.1%). The minima workers were found to be more specialized in the activities related to the preparation of the leaf substrate, which represented 52% of the total number of tasks performed. The generalists performed 40.3% of these tasks, and the foragers 7.9%. Licking the substrate was the behavior most frequently recorded and performed for a longer period of time. In this way, the workers may feed and at the same time eliminate microorganisms that are harmful to the symbiont fungus. The smaller castes, minima and generalists, are those most responsible for the preparation of the leaf substrate and predominate within a colony. From a practical viewpoint, with the introduction of toxic bait containing insecticides, for example, these size categories will be those most intensely intoxicated, especially through the behavior of licking bait pellets. On the basis of the data obtained about these behaviors, we may raise the hypothesis that trophallaxis in not the major factor triggering contamination with an insecticide among the workers of a colony.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.
Resumo:
Aortic stenosis has become the most frequent type of valvular heart disease in Europe and North America and presents in the large majority of patients as calcified aortic stenosis in adults of advanced age. Surgical aortic valve replacement has been recognized to be the definitive therapy which improves considerably survival for severe aortic stenosis since more than 40 years. In the most recent period, operative mortality of isolated aortic valve replacement for aortic stenosis varies between 1–3% in low-risk patients younger than 70 years and between 4 and 8% in selected older adults. Long-term survival following aortic valve replacement is close to that observed in a control population of similar age. Numerous observational studies have consistently demonstrated that corrective surgery in symptomatic patients is invariably followed by a subjective improvement in quality of life and a substantial increase in survival rates. More recently, transcatheter aortic valve implantation (TAVI) has been demonstrated to be feasible in patients with high surgical risk using either a retrograde transfemoral or transsubclavian approach or an antegrade, transapical access. Reported 30-day mortality ranges between 5 and 15%) and is acceptable when compared to the risk predicted by the logistic EuroSCORE (varying between 20 and 35%) and the STS Score, although the EuroScore has been shown to markedly overestimate the effective operative risk. One major concern remains the high rate of paravalvular regurgitation which is observed in up to 85% of the patients and which requires further follow-up and critical evaluation. In addition, long-term durability of these valves with a focus on the effects of crimping remains to be addressed, although 3-5 year results are promising. Sutureless biological valves were designed to simplify and significantly accelerate the surgical replacement of a diseased valve and allow complete excision of the calcified native valve. Until now, there are 3 different sutureless prostheses that have been approved. The 3f Enable valve from ATS-Medtronic received CE market approval in 2010, the Perceval S from Sorin during Q1 of 2011 and the intuity sutureless prosthesis from Edwards in 2012. All these devices aim to facilitate valve surgery and therefore have the potential to decrease the invasivness and to shorten the conventional procedure without compromise in term of excision of the diseased valve. This review summarizes the history and the current knowledge of sutureless valve technology.
Resumo:
A life-size mechanical middle ear model and human temporal bones were used to evaluate three different middle ear transducers for implantable hearing aids: the driving rod transducer (DRT), the floating mass transducer (FMT) or vibrant sound bridge, and the contactless transducer (CLT). Results of the experiments with the mechanical model were within the range of the results for human temporal bones. However, results with the mechanical model showed better reproducibility. The handling of the mechanical model was considerably simpler and less time-consuming. Systematic variations of mounting parameters showed that the angle of the rod has virtually no effect on the output of the DRT, the mass loading on the cable of the FMT has a larger impact on the output than does the tightness of crimping, and the output level of the CLT can be increased by 10 dB by optimizing the mounting parameters.
Resumo:
Menisci are anchored to the tibia by means of ligament-like structures called meniscal attachments. Failure material properties of bovine meniscal attachments were obtained. There were no significant differences in the structural properties or ultimate stress between the meniscal attachments (p>0.05). Furthermore, Glycosaminoglycan (GAG) fraction and crimping frequency was obtained for each attachment using histology and differential interference contrast (DIC) respectively. Results showed that the anterior attachment’s insertion had the greatest GAG fraction when compared to the posterior attachment’s insertion. Crimp frequency of the collagen fibrils was homogeneous along the length. Moreover, Scanning Electron Microscopy (SEM) technique was used to reveal the morphology of collagen in human meniscal attachments. Its midsubstance was composed of collagen fascicles running parallel to the longitudinal axis, with a few fibrils running obliquely, and others transversely. There were no differences between attachments for crimping angle or length. Since ligamentous-type tissues are comprised mainly of water, the fluid pressure within meniscal horn attachments was measured using a Fiber Optic Microsensor (FOM). Four cadaveric human joints were subjected to 2BW compressive load (ramp) at 0-, 15-, and 30-degrees of flexion for a minute and then the load was hold for 20 minutes (equilibrium). There were significant differences between 0- and 15- (p1– c5) were obtained. Significant differences were found on the straightened collagen fibers coefficient (c5) between MP and LA attachments (p
Resumo:
The impact of end customer quality complaints with direct relationship with automotive components has presented negative trend at European level for the entire automotive industry. Thus, this research proposal is to concentrate efforts on the most important items of Pareto chart and understand the failure type and the mechanism involved, link and impact of the project and parameters on the process, ending it with the development of one of the company’s most desired tool, that hosted this project – European methodology of terminals defects classification, and listing real opportunities for improvement based on measurement and analysis of actual data. Through the development of terminals defects classification methodology, which is considered a valuable asset to the company, all the other companies of the YAZAKI’s group will be able to characterize terminals as brittle or ductile, in order to put in motion, more efficiently, all the other different existing internal procedures for the safeguarding of the components, improving manufacturing efficiency. Based on a brief observation, nothing can be said in absolute sense, concerning the failure causes. Base materials, project, handling during manufacture and storage, as well as the cold work performed by plastic deformation, all play an important role. However, it was expected that this failure has been due to a combination of factors, in detriment of the existence of a single cause. In order to acquire greater knowledge about this problem, unexplored by the company up to the date of commencement of this study, was conducted a thorough review of existing literature on the subject, real production sites were visited and, of course, the actual parts were tested in lab environment. To answer to many of the major issues raised throughout the investigation, were used extensively some theoretical concepts focused on the literature review, with a view to realizing the relationship existing between the different parameters concerned. Should here be stated that finding technical studies on copper and its alloys is really hard, not being given all the desirable information. This investigation has been performed as a YAZAKI Europe Limited Company project and as a Master Thesis for Instituto Superior de Engenharia do Porto, conducted during 9 months between 2012/2013.
Resumo:
New and promising treatments for coronary heart disease are enabled by vascular scaffolds made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular’s bioresorbable vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and crystalline microstructure depend on the thermal and deformation history during processing. In turn, the semicrystalline morphology determines scaffold strength and biodegradation time. However, spatially-resolved information about the resulting material structure (crystallinity and crystal orientation) is needed to interpret in vivo observations.
The first manufacturing step of the scaffold is tube expansion in a process similar to injection blow molding. Spatial uniformity of the tube microstructure is essential for the consistent production and performance of the final scaffold. For implantation into the artery, solid-state deformation below the glass transition temperature is imposed on a laser-cut subassembly to crimp it into a small diameter. Regions of localized strain during crimping are implicated in deployment behavior.
To examine the semicrystalline microstructure development of the scaffold, we employed complementary techniques of scanning electron and polarized light microscopy, wide-angle X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the microstructure at the micro and nano length scale. The results show that the expanded tube is very uniform in the azimuthal and axial directions and that radial variations are more pronounced. The crimping step dramatically changes the microstructure of the subassembly by imposing extreme elongation and compression. Spatial information on the degree and direction of chain orientation from X-ray microdiffraction data gives insight into the mechanism by which the PLLA dissipates the stresses during crimping, without fracture. Finally, analysis of the microstructure after deployment shows that it is inherited from the crimping step and contributes to the scaffold’s successful implantation in vivo.