988 resultados para Crash risk
Resumo:
Crash risk is the statistical probability of a crash. Its assessment can be performed through ex post statistical analysis or in real-time with on-vehicle systems. These systems can be cooperative. Cooperative Vehicle-Infrastructure Systems (CVIS) are a developing research avenue in the automotive industry worldwide. This paper provides a survey of existing CVIS systems and methods to assess crash risk with them. It describes the advantages of cooperative systems versus non-cooperative systems. A sample of cooperative crash risk assessment systems is analysed to extract vulnerabilities according to three criteria: market penetration, over-reliance on GPS and broadcasting issues. It shows that cooperative risk assessment systems are still in their infancy and requires further development to provide their full benefits to road users.
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.
Resumo:
A number of advanced driver assistance systems (ADAS) are currently being released on the market, providing safety functions to the drivers such as collision avoidance, adaptive cruise control or enhanced night-vision. These systems however are inherently limited by their sensory range: they cannot gather information from outside this range, also called their “perceptive horizon”. Cooperative systems are a developing research avenue that aims at providing extended safety and comfort functionalities by introducing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications to the road actors. This paper presents the problematic of cooperative systems, their advantages and contributions to road safety and exposes some limitations related to market penetration, sensors accuracy and communications scalability. It explains the issues of how to implement extended perception, a central contribution of cooperative systems. The initial steps of an evaluation of data fusion architectures for extended perception are exposed.
Resumo:
Government promotion of active transport has renewed interest in cycling safety. Research has shown that bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers. On-road cycling injuries are under-reported in police data, and many non-serious injuries are not recorded in any official database. This study aims to explore the relationships between rider characteristics and environmental factors that influence per kilometre risk of bicycle-related crash and non-crash injuries.
Resumo:
The Queensland Government has implemented strategies promoting a shift from individual car use to active transport, a transition which requires drivers to adapt to sharing the road with increased numbers of people cycling through transport network. For this to occur safely, changes in both road infrastructure and road user expectations and behaviors will be needed. Creating separate cycle infrastructure does not remove the need for cyclists to commence, cross or finish travel on shared roads. Currently intersections are one of the predominant shared road spaces where crashes result in cyclists being injured or killed. This research investigates how Brisbane cyclists and drivers perceive risk when interacting with other road users at intersections. The current study replicates a French study conducted by co-authors Chaurand and Delhomme in 2011 and extends it to assess gender effects which have been reported in other Australian cycling research. An online survey was administered to experienced cyclists and drivers. Participants rated the level of risk they felt when imagining a number of different road situations. Based on the earlier French study it is expected that perceived crash risk will be influenced both by the participant’s mode of travel and the type of interacting vehicle and perceived risk will be greater when the interaction is with a car than a bicycle. It is predicted that risk perception will decrease as the level of experience increases and that male participants will have a higher perception of skill and lower perception of risk than females. The findings of this Queensland study will provide a valuable insight into perceived risk and the traffic behaviours of drivers and cyclists when interacting with other road users and results will be available for presentation at the Congress.
Resumo:
Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the assessment of the road risk describing a particular driving situation. In this paper, we compare the performance of a cooperative risk assessment approach against a non-cooperative approach; we used an advanced simulation framework, allowing for accurate and detailed, close-to-reality simulations. Risk is estimated, in both cases, with combinations of indicators based on the TTC. For the non-cooperative approach, vehicles are equipped only with an AAC-like forward-facing ranging sensor. On the other hand, for the cooperative approach, vehicles share information through 802.11p IVC and create an augmented map representing their environment; risk indicators are then extracted from this map. Our system shows that the cooperative risk assessment provides a systematic increase of forward warning to most of the vehicles involved in a freeway emergency braking scenario, compared to a non-cooperative system.
Resumo:
The increased popularity of mopeds and motor scooters in Australia and elsewhere in the last decade has contributed substantially to the greater use of powered two-wheelers (PTWs) as a whole. As the exposure of mopeds and scooters has increased, so too has the number of reported crashes involving those PTW types, but there is currently little research comparing the safety of mopeds and, particularly, larger scooters with motorcycles. This study compared the crash risk and crash severity of motorcycles, mopeds and larger scooters in Queensland, Australia. Comprehensive data cleansing was undertaken to separate motorcycles, mopeds and larger scooters in police-reported crash data covering the five years to 30 June 2008. The crash rates of motorcycles (including larger scooters) and mopeds in terms of registered vehicles were similar over this period, although the moped crash rate showed a stronger downward trend. However, the crash rates in terms of distance travelled were nearly four times higher for mopeds than for motorcycles (including larger scooters). More comprehensive distance travelled data is needed to confirm these findings. The overall severity of moped and scooter crashes was significantly lower than motorcycle crashes but an ordered probit regression model showed that crash severity outcomes related to differences in crash characteristics and circumstances, rather than differences between PTW types per se. Greater motorcycle crash severity was associated with higher (>80 km/h) speed zones, horizontal curves, weekend, single vehicle and nighttime crashes. Moped crashes were more severe at night and in speed zones of 90 km/h or more. Larger scooter crashes were more severe in 70 km/h zones (than 60 km/h zones) but not in higher speed zones, and less severe on weekends than on weekdays. The findings can be used to inform potential crash and injury countermeasures tailored to users of different PTW types.
Resumo:
This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.
Resumo:
Exposure control or case-control methodologies are common techniques for estimating crash risks, however they require either observational data on control cases or exogenous exposure data, such as vehicle-kilometres travelled. This study proposes an alternative methodology for estimating crash risk of road user groups, whilst controlling for exposure under a variety of roadway, traffic and environmental factors by using readily available police-reported crash data. In particular, the proposed method employs a combination of a log-linear model and quasi-induced exposure technique to identify significant interactions among a range of roadway, environmental and traffic conditions to estimate associated crash risks. The proposed methodology is illustrated using a set of police-reported crash data from January 2004 to June 2009 on roadways in Queensland, Australia. Exposure-controlled crash risks of motorcyclists—involved in multi-vehicle crashes at intersections—were estimated under various combinations of variables like posted speed limit, intersection control type, intersection configuration, and lighting condition. Results show that the crash risk of motorcycles at three-legged intersections is high if the posted speed limits along the approaches are greater than 60 km/h. The crash risk at three-legged intersections is also high when they are unsignalized. Dark lighting conditions appear to increase the crash risk of motorcycles at signalized intersections, but the problem of night time conspicuity of motorcyclists at intersections is lessened on approaches with lower speed limits. This study demonstrates that this combined methodology is a promising tool for gaining new insights into the crash risks of road user groups, and is transferrable to other road users.
Resumo:
The future on-road safety of drivers affected by Whiplash Associated Disorder (WAD), the most common soft-tissue injury suffered in a traffic crash, has not been extensively explored. We obtained an anonymised file of 4280 insurance claimants with WAD and, as controls, 1116 claimants with comparably severe soft-tissue injuries who are considered to be at no increased risk than the general population. Their demographic information, road user type and traffic crash records both prior and subsequent to the traffic incident in which the injury occurred, the index crash, were obtained. Rates of subsequent crash involvement in these two groups were then compared, adjusting for age, sex, road user type and prior crash experience. The risk of a subsequent crash in the WAD group relative to controls was 1.14 (95% confidence interval, 0.87–1.48). To allow for differentially altered driving exposure after index crash we distributed a brief survey asking about changes in driving habits after a traffic crash involving injury via physiotherapy clinics and online through the electronic newsletter of a local motoring organisation. The survey yielded responses from 113 drivers who had experienced WAD in a traffic crash and 53 with other soft tissue injuries. There were no differences on average between the groups in their prior driving levels or their percentage change therein at one, three or six months after injury. There was thus no evidence that drivers with WAD are at any higher safety risk than drivers with other types of relatively minor post-crash soft tissue injury.
Resumo:
Male and Female, Cyclist and Driver Perceptions of Crash Risk in Critical Road Situations. Governments are promoting cycling but many Australians, particularly women, do not ride because they perceive it to be too risky. This research compared the risks perceived by female and male, cyclists and drivers in specific on-road situations, accounting for factors such as travel patterns and experience, perceived skill, and risk taking behaviours. Compared to their male counterparts, female cyclists and drivers gave similarly elevated perceptions of risk. These differences are not completely accounted for by cycling patterns or perceptions of skill. Thus, these gender differences are not specific to cycling, but may reflect wider differences in risk perception.
Resumo:
Many drivers and non-cyclists perceive cycling as an extremely risky activity with women in particular being concerned about the risk of injury. The low rates of cycling participation by women pose a threat to the achievement of government targets for cycling participation and restrict the potential transport, health and environmental benefits that increased levels of cycling could provide. This study seeks to extend earlier research in gender and cycling by comparing the risks perceived by female and male cyclists and drivers in specific on-road situations while accounting for other potentially gender-related factors such as travel patterns and experience, perceived skill, and risk taking behaviors. In an online survey, 444 regular cyclists and 151 (non-cyclist) car drivers rated the level of risk in six situations: Failing to yield; Going through a red light; Not signaling when turning; Swerving; Tailgating; and Not checking traffic. The study found that the higher levels of risk perceived by women are not completely accounted for by differences in cycling patterns or perceptions of skill. Compared to their male counterparts, female cyclists and car drivers had similarly elevated perceptions of risk suggesting that these gender differences are not specific to cycling, but reflect wider differences in risk perception. Not all of the gender differences were consistent across cyclists and drivers. Higher levels of perceived skill were evident for male cyclists but not for male car drivers. Further research is needed to explore the robustness and interpretation of this finding.
Resumo:
- Objective Driver sleepiness is a major crash risk factor, but may be under-recognized as a risky driving behavior. Sleepy driving is usually rated as less of a road safety issue than more well-known risky driving behaviors, such as drink driving and speeding. The objective of this study was to compare perception of crash risk of sleepy driving, drink driving, and speeding. - Methods In total, 300 Australian drivers completed a questionnaire that assessed crash risk perceptions for sleepy driving, drink driving, and speeding. Additionally, the participants perception of crash risk was assessed for five different contextual scenarios that included different levels of sleepiness (low, high), driving duration (short, long), and time of day/circadian influences (afternoon, night-time) of driving. - Results The analysis confirmed that sleepy driving was considered a risky driving behavior, but not as risky as high levels of speeding (p < .05). Yet, the risk of crashing at 4 am was considered as equally risky as low levels of speeding (10 km over the limit). The comparisons of the contextual scenarios revealed driving scenarios that would arguably be perceived as quite risky due to time of day/circadian influences were not reported as high risk. - Conclusions The results suggest a lack of awareness or appreciation of circadian rhythm functioning, particularly the descending phase of circadian rhythm that promotes increased sleepiness in the afternoon and during the early hours of the morning. Yet, the results suggested an appreciation of the danger associated with long distance driving and driver sleepiness. Further efforts are required to improve the community’s awareness of the impairing effects from sleepiness and in particular, knowledge regarding the human circadian rhythm and the increased sleep propensity during the circadian nadir.