942 resultados para Crash Hazards.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
Road construction and maintenance activities present challenges for ensuring the safety of workers and the traveling public alike. Hazards in work zones are typically studied using historical crash records but the current study took a qualitative approach by interviewing 66 workers from various work zones in Queensland, Australia. This supplemented and enhanced the limited available data regarding the frequency and nature of work zone crashes in Australia, provided worker insights into contributing factors, and assessed their opinions on the likely effectiveness of current or future approaches to hazard mitigation. Workers may not be aware of objective data regarding effectiveness, but their attitudes and consequent levels of compliance can influence both the likelihood of implementation and the outcomes of safety measures. Despite the potential importance of worker perceptions, they have not been studied comprehensively to date, and thus this study fills a significant gap in the literature. Excessive vehicle speeds, driver distraction and aggression towards roadworkers, working in wet weather, at night and close to traffic stream were among the most common hazards noted by workers. The safety measures perceived to be most effective included police presence, active enforcement, and improving driver awareness and education about work zones. Worker perceptions differed according to their level of exposure to hazards.
Resumo:
Crash cushions are devices deployed on the road network in order to shield fixed roadside hazards and the non-crashworthy ends of road safety barriers. However crash cushions vary in terms of configuration and operation, meaning that different devices may also vary in terms of ability to mitigate occupant risk. In this study, data derived from crash testing of eleven redirective crash cushions is used as the base input to a numerical procedure for calculation of occupant risk indicators Occupant Impact Velocity (OIV), Occupant Ridedown Acceleration (ORA) and longitudinal Acceleration Severity Index (ASI) for a range of simulated impacting vehicles (mass 800 kg to 2,500 kg) impacting each crash cushion at a range of impact speeds (18 m/s to 32 m/s). The results may be interpreted as demonstrating firstly that enhanced knowledge of the performance of a device over a range of impact conditions, i.e., beyond the crash testing, may assist in determining the crash cushion most suited to a particular application; secondly that a more appropriate conformance test for occupant risk would be a frontal impact by a small (light) vehicle travelling parallel to and aligned with the centreline of the crash cushion; and thirdly that current documented numerical procedures for calculating occupant risk indicators may require review.
Resumo:
Federal Highway Administration, Implementation Division, Washington, D.C.
Resumo:
Listed Australian property companies wrote off more than $8.5 billlion from their ill-fated US investment adventures during this reporting season.
Resumo:
There is consensus among community and road safety agencies that driver fatigue is a major road safety issue and it is well known that excessive fatigue is linked with an increased risk of a motor vehicle crash. Previous research has implicated a wide variety of factors involved in fatigue-related crashes and the effects of these various factors in regard to crash risk can be interpreted as causal (i.e. alcohol and/or drugs may induce fatigue states) or additive (e.g. where a lack of sleep is combined with alcohol). As such, the purpose of this investigation was to examine self-report data to determine whether there are any differences in the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. Such research is important to understand how fatigue related incidents occur within the typical driving patterns of men and women and it provides a starting point in order to explore if males and females experience and understand the risk of diving when tired in the same way. A representative sample of (N = 1,600) residents living in the Australian Capital Territory (ACT) and New South Wales (NSW), Australia, were surveyed regarding their experience of fatigue and their involvement in fatigue-related crashes and close call incidents. Results revealed that over 35% of participants reported having had a close call or crash due to driving when tired in the five years prior to the study being conducted. In addition, the results obtained revealed a number of interesting characteristics that provide preliminary evidence that gender differences do exist when examining the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. It is argued that the results obtained can provide particularly useful information for the refinement and further development of appropriate countermeasures that better target this complex issue.
Resumo:
Research has noted a ‘pronounced pattern of increase with increasing remoteness' of death rates in road crashes. However, crash characteristics by remoteness are not commonly or consistently reported, with definitions of rural and urban often relying on proxy representations such as prevailing speed limit. The current paper seeks to evaluate the efficacy of the Accessibility / Remoteness Index of Australia (ARIA+) to identifying trends in road crashes. ARIA+ does not rely on road-specific measures and uses distances to populated centres to attribute a score to an area, which can in turn be grouped into 5 classifications of increasing remoteness. The current paper uses applications of these classifications at the broad level of Australian Bureau of Statistics' Statistical Local Areas, thus avoiding precise crash locating or dedicated mapping software. Analyses used Queensland road crash database details for all 31,346 crashes resulting in a fatality or hospitalisation occurring between 1st July, 2001 and 30th June 2006 inclusive. Results showed that this simplified application of ARIA+ aligned with previous definitions such as speed limit, while also providing further delineation. Differences in crash contributing factors were noted with increasing remoteness such as a greater representation of alcohol and ‘excessive speed for circumstances.' Other factors such as the predominance of younger drivers in crashes differed little by remoteness classification. The results are discussed in terms of the utility of remoteness as a graduated rather than binary (rural/urban) construct and the potential for combining ARIA crash data with census and hospital datasets.
Resumo:
Crash risk is the statistical probability of a crash. Its assessment can be performed through ex post statistical analysis or in real-time with on-vehicle systems. These systems can be cooperative. Cooperative Vehicle-Infrastructure Systems (CVIS) are a developing research avenue in the automotive industry worldwide. This paper provides a survey of existing CVIS systems and methods to assess crash risk with them. It describes the advantages of cooperative systems versus non-cooperative systems. A sample of cooperative crash risk assessment systems is analysed to extract vulnerabilities according to three criteria: market penetration, over-reliance on GPS and broadcasting issues. It shows that cooperative risk assessment systems are still in their infancy and requires further development to provide their full benefits to road users.
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.