911 resultados para Cosmic-ray interactions with the Earth
Resumo:
The energy deposition by slowing-down of energetic ionizing particles in the atmosphere enhances the production of constituent concentration which perturbs and eventually destroys the ozone (OZ) layer. Near the Brazilian anomaly region the cosmic-ray (CR) intensity varies greatly due to the magnetic activity in that region. In order to study these variations, stratospheric balloons were launched to measure, simultaneously, the CR and OZ fluxes in the atmosphere. The Fourier-analysed data collected during the flight on April 22, 1989 show evidences of a short-period variation for both fluxes measured. Attempts to verify the physical mechanisms which associate the CR change with the OZ one are not conclusive due to limited data observed on that event. © 1993 Società Italiana di Fisica.
Resumo:
We present a semiempirical method to study the production and propagation of atmospheric secondary protons with energy>100 Mev, moving in the vertical direction. The derived production functions are fitted by the least-square method for the only previously published splash (SP) and return (RE) albedos observed data using the same instrument and measurement sites. The closed agreements between the measurement data and the calculations over a wide range of atmospheric depths lead to a possible extension of the method for other latitudes. The spectra of SP and RE intensities versus the geomagnetic cut-off reveal similar behaviour as assumed earlier by the theory for those components in the Earth's magnetic field. © 1993 Società Italiana di Fisica.
Resumo:
The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays.
Resumo:
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/. c to 1 TeV/. c. The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.), independent of the muon momentum, below 100 GeV/. c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments. © 2010.
Resumo:
Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.
Resumo:
The report of this subcommittee concerns the impact of contact lenses (CLs) on the ocular surface, with a particular emphasis on CL discomfort (CLD). We define the ocular surface, its regional anatomy, and the physiological responses of each region to CL wear.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Precision polarimetry of the cosmic microwave background (CMB) has become a mainstay of observational cosmology. The ΛCDM model predicts a polarization of the CMB at the level of a few μK, with a characteristic E-mode pattern. On small angular scales, a B-mode pattern arises from the gravitational lensing of E-mode power by the large scale structure of the universe. Inflationary gravitational waves (IGW) may be a source of B-mode power on large angular scales, and their relative contribution to primordial fluctuations is parameterized by a tensor-to-scalar ratio r. BICEP2 and Keck Array are a pair of CMB polarimeters at the South Pole designed and built for optimal sensitivity to the primordial B-mode peak around multipole l ~ 100. The BICEP2/Keck Array program intends to achieve a sensitivity to r ≥ 0.02. Auxiliary science goals include the study of gravitational lensing of E-mode into B-mode signal at medium angular scales and a high precision survey of Galactic polarization. These goals require low noise and tight control of systematics. We describe the design and calibration of the instrument. We also describe the analysis of the first three years of science data. BICEP2 observes a significant B-mode signal at 150 GHz in excess of the level predicted by the lensed-ΛCDM model, and Keck Array confirms the excess signal at > 5σ. We combine the maps from the two experiments to produce 150 GHz Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 248000 μK2. We also show preliminary Keck Array 95 GHz maps. A joint analysis with the Planck collaboration reveals that much of BICEP2/Keck Array's observed 150 GHz signal at low l is more likely a Galactic dust foreground than a measurement of r. Marginalizing over dust and r, lensing B-modes are detected at 7.0σ significance.
Pressure surface separations in low-pressure turbines — part 2: Interactions with the secondary flow
Resumo:
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.
Resumo:
Two major signaling pathways, those triggered by estrogen (E(2)) and by the Wnt family, interact in the breast to cause growth and differentiation. The estrogen receptors ER(alpha) and ER(beta) are activated by binding E(2) and act as ligand-dependent transcription factors. The effector for the Wnt family is the Tcf family of transcription factors. Both sets of transcription factors recognize discrete but different nucleotide sequences in the promoters of their target genes. By using transient transfections of reporter constructs for the osteopontin and thymidine kinase promoters in rat mammary cells, we show that Tcf-4 antagonizes and Tcf-1 stimulates the effects of activated ER/E(2). For mutants of the former promoter, the stimulatory effects of ER(alpha)/E(2) can be made to be dependent on Tcf-1, and for the latter promoter the effects of the T cell factors (TCFs) are dependent on ER/E(2). Direct interaction between ERs and Tcfs either at the Tcf/ER(alpha)-binding site on the DNA or in the absence of DNA is established by gel retardation assays or by coimmunoprecipitation/biosensor methods, respectively. These results show that the two sets of transcription factors can interact directly, the interaction between ERs and Tcf-4 being antagonistic and that between ERs and Tcf-1 being synergistic on the activity of the promoters employed. Since Tcf-4 is the major Tcf family member in the breast, it is suggested that the antagonistic interaction is normally dominant in vivo in this tissue.