919 resultados para Coronal planes
Resumo:
Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.
Resumo:
To analyse and compare standing thoracolumbar curves in normal weight participants and participants with obesity, using an electromagnetic device, and to analyse the measurement reliability. Material and Methods. Cross-sectional study was carried out. 36 individuals were divided into two groups (normal-weight and participants with obesity) according to their waist circumference. The reference points (T1–T8–L1–L5 and both posterior superior iliac spines) were used to perform a description of thoracolumbar curvature in the sagittal and coronal planes. A transformation from the global coordinate system was performed and thoracolumbar curves were adjusted by fifth-order polynomial equations. The tangents of the first and fifth lumbar vertebrae and the first thoracic vertebra were determined from their derivatives. The reliability of the measurement was assessed according to the internal consistency of the measure and the thoracolumbar curvature angles were compared between groups. Results. Cronbach’s alpha values ranged between 0.824 (95% CI: 0.776–0.847) and 0.918 (95% CI: 0.903–0.949). In the coronal plane, no significant differences were found between groups; however, in sagittal plane, significant differences were observed for thoracic kyphosis. Conclusion. There were significant differences in thoracic kyphosis in the sagittal plane between two groups of young adults grouped according to their waist circumference.
Resumo:
Estudar os mecanismos subjacentes à produção de fala é uma tarefa complexa e exigente, requerendo a obtenção de dados mediante a utilização de variadas técnicas, onde se incluem algumas modalidades imagiológicas. De entre estas, a Ressonância Magnética (RM) tem ganho algum destaque, nos últimos anos, posicionando-se como uma das mais promissoras no domínio da produção de fala. Um importante contributo deste trabalho prende-se com a otimização e implementação de protocolos (RM) e proposta de estratégias de processamento de imagem ajustados aos requisitos da produção de fala, em geral, e às especificidades dos diferentes sons. Para além disso, motivados pela escassez de dados para o Português Europeu (PE), constitui-se como objetivo a obtenção de dados articulatórios que permitam complementar informação já existente e clarificar algumas questões relativas à produção dos sons do PE (nomeadamente, consoantes laterais e vogais nasais). Assim, para as consoantes laterais foram obtidas imagens RM (2D e 3D), através de produções sustidas, com recurso a uma sequência Eco de Gradiente (EG) rápida (3D VIBE), no plano sagital, englobando todo o trato vocal. O corpus, adquirido por sete falantes, contemplou diferentes posições silábicas e contextos vocálicos. Para as vogais nasais, foram adquiridas, em três falantes, imagens em tempo real com uma sequência EG - Spoiled (TurboFLASH), nos planos sagital e coronal, obtendo-se uma resolução temporal de 72 ms (14 frames/s). Foi efetuada aquisição sincronizada das imagens com o sinal acústico mediante utilização de um microfone ótico. Para o processamento e análise de imagem foram utilizados vários algoritmos semiautomáticos. O tratamento e análise dos dados permitiu efetuar uma descrição articulatória das consoantes laterais, ancorada em dados qualitativos (e.g., visualizações 3D, comparação de contornos) e quantitativos que incluem áreas, funções de área do trato vocal, extensão e área das passagens laterais, avaliação de efeitos contextuais e posicionais, etc. No que respeita à velarização da lateral alveolar /l/, os resultados apontam para um /l/ velarizado independentemente da sua posição silábica. Relativamente ao /L/, em relação ao qual a informação disponível era escassa, foi possível verificar que a sua articulação é bastante mais anteriorizada do que tradicionalmente descrito e também mais extensa do que a da lateral alveolar. A resolução temporal de 72 ms conseguida com as aquisições de RM em tempo real, revelou-se adequada para o estudo das características dinâmicas das vogais nasais, nomeadamente, aspetos como a duração do gesto velar, gesto oral, coordenação entre gestos, etc. complementando e corroborando resultados, já existentes para o PE, obtidos com recurso a outras técnicas instrumentais. Para além disso, foram obtidos novos dados de produção relevantes para melhor compreensão da nasalidade (variação área nasal/oral no tempo, proporção nasal/oral). Neste estudo, fica patente a versatilidade e potencial da RM para o estudo da produção de fala, com contributos claros e importantes para um melhor conhecimento da articulação do Português, para a evolução de modelos de síntese de voz, de base articulatória, e para aplicação futura em áreas mais clínicas (e.g., perturbações da fala).
Resumo:
The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential institutions for participation in clinical trials. Anthropomorphic quality assurance (QA) phantoms are one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters (TLDs) and radiochromic film. The RPC desires to switch from TLD as the absolute dosimeter in the phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular dependence exhibited by the OSLD. The purpose of this study was to characterize the angular dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric measurements as a replacement for TLD in the QA phantoms. A 10 cm diameter high-impact polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar treatment deliveries. OSLD were irradiated in the spherical phantom, and the responses of the dosimeter from edge-on angles were normalized to the response when irradiated with the beam incident normally on the surface of the dosimeter. The average normalized response was used to establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-coplanar treatments specific to CyberKnife. The RPC pelvic phantom dosimetry insert was modified to hold OSLD, in addition to the TLD, adjacent to the planes of film. Treatment plans of increasing angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and one in Accuray’s MultiPlan v3.5.3 (CyberKnife). The plans were delivered to the pelvic phantom containing both TLD and OSLD in the target volume. The pelvic phantom was also sent to two institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment. For the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and coronal planes. The doses measured from the TLD and OSLD were calculated for each irradiation, and the angular correction factors established from the spherical phantom irradiations were applied to the OSLD dose. The ratio of the TLD dose to the angular corrected OSLD dose was calculated for each irradiation. The corrected OSLD dose was found to be within 1% of the TLD measured dose for all irradiations, with the exception of the in-house CyberKnife deliveries. The films were normalized to both TLD measured dose and the corrected OSLD dose. Dose profiles were obtained and gamma analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when corrected for the angular dependence, to provide equivalent results to TLD. The results of this study indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the dosimeter’s angular dependence.
Resumo:
The purpose of this study was to analyze the histometry of ligature-induced periodontitis in rats at different histological section depths. Sixteen male adult Wistar rats were randomly assigned to two groups: ligature and control. In the ligature group, rats received a sterile 4/0 silk ligature around the maxillary right 2nd molar. Thirty serial sections containing the 1st and 2nd molars, in which the coronal and root pulp, cementoenamel junction (CEJ) in the mesial side of the 2nd molar, interproximal alveolar bone and connective fiber attachment were clearly visible, were selected for histometric analysis. The histological sections were clustered in groups of 10 sections corresponding the buccal (B), central (C) and lingual (L) regions of the of periodontal tissue samples. The distance between the CEJ in the mesial side of the 2nd molar and the attached periodontal ligament fibers (CEJ-PL) as well as the distance between the CEJ and the alveolar bone crest (CEJ-BC) were determined. From CEJ-PL and CEJ-BC distances measured for each specimen, the measurements obtained in the B, L and C regions were recorded individually and together. Data were submitted to statistical analysis. Significant differences (p<0.001) were observed between the control and ligature groups regarding CEJ-PL (0.05 mm and 0.26 mm, respectively) and CEJ-BC (0.47 mm and 0.77 mm, respectively) measurements. Regarding the depth of the buccal, central and lingual planes, the means of CEJ-PL and CEJ-BC of both groups showed no statistically significant differences (p>0.05). In conclusion, the selection of 10 serial sections of the central region of periodontal tissue samples at any depth can be considered as representative for the evaluation of periodontal ligament fiber attachment and bone loss in ligature-induced periodontitis in rats.
Resumo:
Knowledge about segmental flexibility in adolescent idiopathic scoliosis is crucial for a better biomechanical understanding, particularly for the development of fusionless, growth-guiding techniques. Currently, there is lack of data in this field. The objective of this study was, therefore, to compute segmental flexibility indices (standing angle minus corrected angle/standing angle). We compared segmental disc angles in 76 preoperative sets of standing and fulcrum-bending radiographs of thoracic curves (paired, two-tailed t tests, p < 0.05). The mean standing Cobb angle was 59.7 degrees (range 41.3 degrees -95 degrees ) and the flexibility index of the curve was 48.6\% (range 16.6-78.8\%). The disc angles showed symmetric periapical distribution with significant decrease (all p values <0.0001) for every cephalad (+) and caudad (-) level change. The periapical levels +1 and -1 wedged at 8.3 degrees and 8.7 degrees (range 3.5 degrees -14.8 degrees ), respectively. All angles were significantly smaller on the-bending views (p values <0.0001). We noted mean periapical flexibility indices of 46\% (+1), 49\% (-1), 57\% (+2) and 81\% (-2), which were significantly less (p < 0.001) than for the group of remote levels 105\% (+3), 149\% (-3), 231\% (+4) and 300\% (-4). The discal and bony wedging was 60 and 40\%, respectively, and mean values 35 degrees and 24 degrees (p < 0.0001). Their relationship with the Cobb angle showed a moderate correlation (r = 0.56 and 0.45). Functional, radiographic analysis of idiopathic thoracic scoliosis revealed significant, homogenous segmental tethering confined to four periapical levels. Future research will aim at in vivo segmental measurements in three planes under defined load to provide in-depth data for novel therapeutic strategies.
Resumo:
Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.
Resumo:
Background: Evaluation of scapular posture is a fundamental component in the clinical evaluation of the upper quadrant. This study examined the intrarater reliability of scapular posture ratings. Methods: A test-retest reliability investigation was undertaken with one week between assessment sessions. At each session physical therapists conducted visual assessments of scapula posture (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane). These five plane ratings were performed for four different scapular posture perturbating conditions (rest, isometric shoulder; flexion, abduction, and external rotation). Results. A total of 100 complete scapular posture ratings (50 left, 50 right) were undertaken at each assessment. The observed agreement between the test and retest postural plane ratings ranged from 59% to 87%; 16 of the 20 plane-condition combinations exceeded 75% observed agreement. Kappa (and prevalence adjusted bias adjusted kappa) values were inconsistent across the postural planes and perturbating conditions. Conclusions: This investigation generally revealed fair to moderate intrarater reliability in the rating of scapular posture by visual inspection. However, enough disagreement between assessments was present to warrant caution when interpreting perceived changes in scapula position between longitudinal assessments using visual inspection alone.
Resumo:
Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.
Resumo:
Introduction. Endoscopic anterior scoliosis correction has been employed recently as a less invasive and level-sparing approach compared with open surgical techniques. We have previously demonstrated that during the two-year post-operative period, there was a mean loss of rib hump correction by 1.4 degrees. The purpose of this study was to determine whether intra- or inter-vertebral rotational deformity during the post-operative period could account for the loss of rib hump correction. Materials and Methods. Ten consecutive patients diagnosed with adolescent idiopathic scoliosis were treated with an endoscopic anterior scoliosis correction. Low-dose computed tomography scans of the instrumented segment were obtained post-operatively at 6 and 24 months following institutional ethical approval and patient consent. Three-dimensional multi-planar reconstruction software (Osirix Imaging Software, Pixmeo, Switzerland) was used to create axial slices of each vertebral level, corrected in both coronal and sagittal planes. Vertebral rotation was measured using Ho’s method for every available superior and inferior endplate at 6 and 24 months. Positive changes in rotation indicate a reduction and improvement in vertebral rotation. Intra-observer variability analysis was performed on a subgroup of images. Results. Mean change in rotation for vertebral endplates between 6 and 24 months post-operatively was -0.26˚ (range -3.5 to 4.9˚) within the fused segment and +1.26˚ (range -7.2 to 15.1˚) for the un-instrumented vertebrae above and below the fusion. Mean change in clinically measured rib hump for the 10 patients was -1.6˚ (range -3 to 0˚). The small change in rotation within the fused segment accounts for only 16.5% of the change in rib hump measured clinically whereas the change in rotation between the un-instrumented vertebrae above and below the construct accounts for 78.8%. There was no clear association between rib hump recurrence and intra- or inter-vertebral rotation in individual patients. Intra-rater variability was ± 3˚. Conclusions. Intra- and inter-vertebral rotation continues post-operatively both within the instrumented and un-instrumented segments of the immature spine. Rotation between the un-instrumented vertebrae above and below the fusion was +1.26˚, suggesting that the un-instrumented vertebrae improved and de-rotated slightly after surgery. This may play a role in rib hump recurrence, however this remains clinically insignificant.
Resumo:
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.
Resumo:
We propose a computationally efficient image border pixel based watermark embedding scheme for medical images. We considered the border pixels of a medical image as RONI (region of non-interest), since those pixels have no or little interest to doctors and medical professionals irrespective of the image modalities. Although RONI is used for embedding, our proposed scheme still keeps distortion at a minimum level in the embedding region using the optimum number of least significant bit-planes for the border pixels. All these not only ensure that a watermarked image is safe for diagnosis, but also help minimize the legal and ethical concerns of altering all pixels of medical images in any manner (e.g, reversible or irreversible). The proposed scheme avoids the need for RONI segmentation, which incurs capacity and computational overheads. The performance of the proposed scheme has been compared with a relevant scheme in terms of embedding capacity, image perceptual quality (measured by SSIM and PSNR), and computational efficiency. Our experimental results show that the proposed scheme is computationally efficient, offers an image-content-independent embedding capacity, and maintains a good image quality
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.