995 resultados para Cork Processing Wastewater
Resumo:
Nanofiltration process for the treatment/valorisation of cork processing wastewaters was studied. A DS-5 DK 20/40 (GE Water Technologies) nanofiltration membrane/module was used, having 2.09 m(2) of surface area. Hydraulic permeability was determined with pure water and the result was 5.2 L.h(-1).m(-2).bar(-1). The membrane presents a rejection of 51% and 99% for NaCl and MgSO4 salts, respectively. Two different types of regimes were used in the wastewaters filtration process, total recycling mode and concentration mode. The first filtration regime showed that the most favourable working transmembrane pressure was 7 bar working at 25 degrees C. For the concentration mode experiments it was observed a 30% decline of the permeate fluxes when a volumetric concentration factor of 5 was reached. The permeate COD, BOD5, colour and TOC rejection values remained well above the 90% value, which allows, therefore, the concentration of organic matter (namely the tannin fraction) in the concentrate stream that can be further used by other industries. The permeate characterization showed that it cannot be directly discharged to the environment as it does not fulfil the values of the Portuguese discharge legislation. However, the permeate stream can be recycled to the process (boiling tanks) as it presents no colour and low TOC (< 60 ppm) or if wastewater discharge is envisaged we have observed that the permeate biodegradability is higher than 0.5, which renders conventional wastewater treatments feasible.
Resumo:
Cork processing wastewater is an aqueous complex mixture of organic compounds that have been extracted from cork planks during the boiling process. These compounds, such as polysaccharides and polyphenols, have different biodegradability rates, which depend not only on the natureof the compound but also on the size of the compound. The aim of this study is to determine the biochemical oxygen demands (BOD) and biodegradationrate constants (k) for different cork wastewater fractions with different organic matter characteristics. These wastewater fractions were obtained using membrane separation processes, namely nanofiltration (NF) and ultrafiltration (UF). The nanofiltration and ultrafiltration membranes molecular weight cut-offs (MWCO) ranged from 0.125 to 91 kDa. The results obtained showed that the biodegradation rate constant for the cork processing wastewater was around 0.3 d(-1) and the k values for the permeates varied between 0.27-0.72 d(-1), being the lower values observed for permeates generated by the membranes with higher MWCO and the higher values observed for the permeates generated by the membranes with lower MWCO. These higher k values indicate that the biodegradable organic matter that is permeated by the membranes with tighter MWCO is more readily biodegradated.
Resumo:
Wastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries. Various ultrafiltration and nanofiltration membranes where used, with molecular weight cut-offs (MWCO) ranging from 0.125 to 91 kDa. The wastewater and the different permeated fractions were analyzed in terms of Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Phenols (TP), Tannins, Color, pH and Conductivity. Results for the wastewater shown that it is characterized by a high organic content (670.5-1056.8 mg TOC/L, 2285-2604 mg COD/L, 1000-1225 mg BOD/L), a relatively low biodegradability (0.35-0.38 for BODs/COD and 0.44-0.47 for BOD20/COD) and a high content of phenols (360-410 mg tannic acid/L) and tannins (250-270 mg tannic acid/L). The results for the wastewater fractions shown a general decrease on the pollutant content of permeates, and an increase of its biodegradability, with the decrease of the membrane MWCO applied. Particularly, the permeated fraction from the membrane MWCO of 3.8 kDa, presented a favourable index of biodegradability (0.8) and a minimized phenols toxicity that enables it to undergo a biological treatment and so, to be treated in a municipal wastewater treatment plant. Also, within the perspective of valorisation, the rejected fraction obtained through this membrane MWCO may have a significant potential for tannins recovery. Permeated fractions from membranes with MWCO lower than 3.8 kDa, presented a particularly significant decline of organic matter and phenols, enabling this permeates to be reused in the cork processing and so, representing an interesting perspective of zero discharge for the cork industry, with evident environmental and economic advantages. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cork processing involves a boiling step to make the cork softer, which consumes a high volume of water and generates a wastewater with a high organic content, rich in tannins. An assessment of the final wastewater characteristics and of the boiling water composition along the boiling process was performed. The parameters studied were pH, color, total organic carbon (TOC), chemical and biochemical oxygen demands (COD, BOD5, BOD20), total suspended solids (TSS), total phenols and tannins (TP, TT). It was observed that the water solutes extraction power is significantly reduced for higher quantities of cork processed. Valid relationships between parameters were established not only envisaging wastewater characterization but also to provide an important tool for wastewater monitoring and for process control/optimization. Boiling water biodegradability presented decreasing values with the increase of cork processed and for the final wastewater its value is always lower than 0.5, indicating that these wastewaters are very difficult to treat by biological processes. The biodegradability was associated with the increase of tannin content that can rise up to 0.7 g/L. These compounds can be used by other industries when concentrated and the clarified wastewater can be reused, which is a potential asset in this wastewater treatment.
Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum
Resumo:
This work reports on the effect of initial substrate concentration on COD consumption, pH, and H(2) production during cassava processing wastewater fermentation by Clostridium acetobutylicum ATCC 824. Five initial COD wastewater concentrations, namely 5.0, 7.5, 10.7, 15.0, and 30.0 g/L, were used. The results showed that higher substrate concentrations (30.0 and 15.0 COD/L) led to lower H(2) yield as well as less efficient substrate conversion into H(2). On the other hand, initial COD concentrations of 10.7, 7.5 and 5 g/L furnished 1.34, 1.2 and 2.41 mol H(2)/mol glucose, with efficiency of glucose conversion into H(2) of 34, 30, and 60% (mol/mol), respectively. These results demonstrate that cassava processing wastewater, a highly polluting effluent, can be successfully employed as substrate for H(2) production by C acetobutylicum at lower COD concentrations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cork processing wastewater is a very complex mixture of vegetal extracts and has, among other natural compounds, a very high content of phenolic/tannic colloidal matter that is responsible for severe environmental problems. In the present work, the concentration of this wastewater by nanofiltration was investigated with the aim of producing a cork tannin concentrate to be utilized in tanning. Permeation results showed that the permeate fluxes are controlled by both osmotic pressure and fouling/gel layer phenomena, leading to a rapid decrease of permeate fluxes with the concentration factor. The rejection coefficients to organic matter were higher than 95%, indicating that nanofiltration has a very good ability to concentrate the tannins and produce a permeate stream depleted from organic matter. The cork tannin concentrate obtained by nanofiltration and evaporation had total solids concentration of 34.8 g/l. The skins tanned by this concentrate were effectively converted to leather with a shrinking temperature of 7 degrees C.
Resumo:
Attempting to associate waste treatment to the production of clean and renewable energy, this research sought to evaluate the biological production of hydrogen using wastewater from the cassava starch treatment industry, generated during the processes of extraction and purification of starch. This experiment was carried out in a continuous anaerobic reactor with a working volume of 3L, with bamboo stems as the support medium. The system was operated at a temperature of 36°C, an initial pH of 6.0 and under variations of organic load. The highest rate of hydrogen production, of 1.1 L.d-1.L-1, was obtained with application of an organic loading rate of 35 g.L-1.d-1, in terms of total sugar content and hydraulic retention time of 3h, with a prevalence of butyric and acetic acids as final products of the fermentation process. Low C/N ratios contributed to the excessive growth of the biomass, causing a reduction of up to 35% in hydrogen production, low percentages of H2 and high concentrations of CO2in the biogas.
Resumo:
Mode of access: Internet.
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
Aims: The main aims of this work were the study of cork slabs moulds colonization and the evaluation of the moulds diversity during cork processing steps, in different cork stoppers factories. Simultaneously, it was envisaged to perform an evaluation of the air quality. Methods and Results: Moulds were isolated and identified from cork slabs and cork samples in four cork stoppers factories. The identification was based on morphological characters and microscopic observation of the reproductive structures. Airborne spore dispersion was assessed using a two stage Andersen sampler. It was observed that Chrysonilia sitophila was always present on cork slabs during the maturing period, but mould diversity appeared to be associated to the different factory configurations and processing steps. Conclusions: Spatial separation of the different steps of the process, including physical separation of the maturation step, is essential to guarantee high air quality and appropriate cork slabs colonization, i.e. C. sitophila dominance. The sorting and cutting of the edges of cork slabs after boiling and before the maturing step is also recommended. Significance and Impact of the Study: This study is very important for the cork stopper industry as it gives clear indications on how to keep high quality manufacturing standards and how to avoid occupational health problems.
Resumo:
Aims: The main aims of this work were the study of cork slabs moulds colonization and the evaluation of the moulds diversity during cork processing steps, in different cork stoppers factories. Simultaneously, it was envisaged to perform an evaluation of the air quality. Methods and Results: Moulds were isolated and identified from cork slabs and cork samples in four cork stoppers factories. The identification was based on morphological characters and microscopic observation of the reproductive structures. Airborne spore dispersion was assessed using a two stage Andersen sampler. It was observed that Chrysonilia sitophila was always present on cork slabs during the maturing period, but mould diversity appeared to be associated to the different factory configurations and processing steps. Conclusions: Spatial separation of the different steps of the process, including physical separation of the maturation step, is essential to guarantee high air quality and appropriate cork slabs colonization, i.e. C. sitophila dominance. The sorting and cutting of the edges of cork slabs after boiling and before the maturing step is also recommended. Significance and Impact of the Study: This study is very important for the cork stopper industry as it gives clear indications on how to keep high quality manufacturing standards and how to avoid occupational health problems.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV