980 resultados para Coordination compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new Mn(II) coordination compounds {[Mn(NCNCN)2(azpy)]·0.5azpy}n (1), {[Mn(NCS)2(azpy)(CH3OH)2]·azpy}n (2), and [Mn(azpy)2(H2O)4][Mn(azpy)(H2O)5]·4PF6·H2O·5.5azpy (3) (where azpy = 4,4'-azobis-(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest pi center dot center dot center dot pi. and C-H center dot center dot center dot N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (ID) chains of centrosymmetric [Mn(NCS)(2)(CH3OH)(2)} units which form a 2D porous sheet via a CH3 center dot center dot center dot pi supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist pi center dot center dot center dot pi, anion center dot center dot center dot pi, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium(II) coordination compounds of general formula trans-[PdX(2)(isn)(2)], X = Cl(-) (1), N(3) (-) (2), SCN(-) (3), NCO(-) (4), isn = isonicotinamide; were synthesized and characterized in solid state by elemental analysis, infrared spectroscopy, and simultaneous TG-DTA. TG experiments reveal that the compounds 1-4 undergo thermal decomposition in three or four stages, yielding Pd(0) as final residue, according to calculus and identification by X-ray powder diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical approach to the energy transfer process that occurs between a ligand and a rare-earth ion in luminescent complexes is presented. A discussion on the energy transfer mechanisms involved and on the associated selection rules is made. Numerical estimates are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compounds [PdCl(2)L(2)] and [PdL(4)] (L=PPh(3), AsPh(3), SbPh(3)) were studied by thermogravimetric and differential thermal analyses in air. The residues of thermal decomposition consist of metallic palladium, except in the case of the complexes containing SbPh(3), when the residues are palladium and antimony mixtures in appropriate proportions with respect to the stoichiometry of the related complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compounds [NiX 2(PPh 3) 2] (where X is Cl -, Br -, I -, NO - 3, NCS -; and PPh 3 is triphenylphosphine) were prepared and characterized by infrared and atomic absorption spectroscopies and by carbon and hydrogen analyses. Simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of these complexes were recorded in air. The decrease in mass observed indicates conversion of the complexes to oxides. The thermal decomposition of the halogen and nitrate complexes occurred in a number of steps; the thiocyanate complex decomposed in a single step. © 1994.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies by thermogravimetric analysis (TG) and differential thermal analysis (DTA) of the complexes [PtCl2L2] (L is PPh3, AsPh3, SbPh3), [PtLn] (n = 3, L is SbPh3; n = 4, L is PPh3, AsPh3); [(PtL3)2N2]; [(PtL3)2C2] and [Pt(CO)2L2] (L is SbPh3) are described. Analysis of the TG and DTA curves showed that Pt(II) complexes of the type [PtCl2L2] have a higher thermal stability than the corresponding Pt(0) complexes of the type [PtLn], with the exception of [Pt(SbPh3)3], which is more stable than [PtCl2(SbPh3)2]. Thermal stabilities of each of the complexes are compared with those of the others in the series. Mechanisms of thermal decomposition of complexes of the types [PtCl2L2] and [PtLn] are proposed. Residues of the samples were characterized by chemical tests and IR spectroscopy. The residue from the thermal decomposition of [PtCl2L2] (L is PPh3, AsPh3) and [Pt(PPh3)4] is metallic platinum. For [Pt(AsPh3)4] the residue is a mixture of Pt and As, whereas for the complexes containing SbPh3 the residues are mixtures of Pt and Sb. In these cases, the proportional contents of Pt and As or Pt and Sb correspond to the stoichiometry of these elements in the respective complexes. The complexes {[Pt(SbPh3)3]2N2}, {[Pt(SbPh3)3]2C2} lose N2 or the ethynediyl group at 130-150°C and are transformed into [Pt(SbPh3)3]. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VIBRATIONAL ANALYSIS OF COORDINATION COMPOUNDS OF NICKEL (II): AN APPROACH TO THE TEACHING OF POINT GROUPS. This paper presents an IR and Raman experiment executed during the teaching of the course "Chemical Bonds" for undergraduated students of Science and Technology and Chemistry at the Federal University of ABC, in order to facilitate and encourage the teaching and learning of group theory. Some key aspects of this theory are also outlined. We believe that student learning was more significant with the introduction of this experiment, because there was an increase in the discussions level and in the performance during evaluations. This work also proposes a multidisciplinary approach to include the use of quantum chemistry tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M. Verdaguer