156 resultados para Convexity
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Parts, places, and perspectives : a theory of spatial relations based an mereotopology and convexity
Resumo:
This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.
Resumo:
Department of Mathematics, Cochin University of Science and Technology.
Resumo:
This thesis is a study of abstract fuzzy convexity spaces and fuzzy topology fuzzy convexity spaces No attempt seems to have been made to develop a fuzzy convexity theoryin abstract situations. The purpose of this thesis is to introduce fuzzy convexity theory in abstract situations
Resumo:
Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.
Resumo:
The present article initiates a systematic study of the behavior of a strictly increasing, C2 , utility function u(a), seen as a function of agents' types, a, when the set of types, A, is a compact, convex subset of iRm . When A is a m-dimensional rectangle it shows that there is a diffeomorphism of A such that the function U = u o H is strictly increasing, C2 , and strictly convexo Moreover, when A is a strictly convex leveI set of a nowhere singular function, there exists a change of coordinates H such that B = H-1(A) is a strictly convex set and U = u o H : B ~ iR is a strictly convex function, as long as a characteristic number of u is smaller than a characteristic number of A. Therefore, a utility function can be assumed convex in agents' types without loss of generality in a wide variety of economic environments.
Resumo:
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Object. The anatomy of the occipital lobe convexity is so intricate and variable that its precise description is not found in the classic anatomy textbooks, and the occipital sulci and gyri are described with different nomenclatures according to different authors. The aim of this study was to investigate and describe the anatomy of the occipital lobe convexity and clarify its nomenclature. Methods. The configurations of sulci and gyri on the lateral surface of the occipital lobe of 20 cerebral hemispheres were examined in order to identify the most characteristic and consistent patterns. Results. The most characteristic and consistent occipital sulci identified in this study were the intraoccipital, transverse occipital, and lateral occipital sulci. The morphology of the transverse occipital sulcus and the intraoccipital sulcus connection was identified as the most important aspect to define the gyral pattern of the occipital lobe convexity. Conclusions. Knowledge of the main features of the occipital sulci and gyri permits the recognition of a basic configuration of the occipital lobe and the identification of its sulcal and gyral variations. (http://thejns.org/doi/abs/10.3171/2012.1.JNS11978)
Resumo:
This paper analyzes concepts of independence and assumptions of convexity in the theory of sets of probability distributions. The starting point is Kyburg and Pittarelli's discussion of "convex Bayesianism" (in particular their proposals concerning E-admissibility, independence, and convexity). The paper offers an organized review of the literature on independence for sets of probability distributions; new results on graphoid properties and on the justification of "strong independence" (using exchangeability) are presented. Finally, the connection between Kyburg and Pittarelli's results and recent developments on the axiomatization of non-binary preferences, and its impact on "complete" independence, are described.
Resumo:
OBJECTIVE: To evaluate implant accuracy and cosmetic outcome of a new intraoperative patient-specific cranioplasty method after convexity meningioma resection. METHODS: The patient's own bone flap served as a template to mold a negative form with the use of polymethyl methacrylate (PMMA). The area of bone invasion was determined and broadly excised under white light illumination with a safety margin of at least 1 cm. The definitive replica was cast within the remaining bone flap frame and the imprint. Clinical and radiologic follow-up examinations were performed 3 months after surgery. RESULTS: Four women and two men (mean age 51.4 years ± 12.8) underwent reconstruction of bone flap defects after meningioma resection. Mean duration of intraoperative reconstruction of the partial bone flap defects was 19 minutes ± 4 (range 14-24 minutes). Implant sizes ranged from 17-35 cm(2) (mean size 22 cm(2) ± 8). Radiologic and clinical follow-up examinations revealed excellent implant alignment and favorable cosmesis (visual analogue scale for cosmesis [VASC] = 97 ± 5) in all patients. CONCLUSIONS: Patient-specific reconstruction of partial bone flap defects after convexity meningioma resection using the presented intraoperative PMMA cast method resulted in excellent bony alignment and a favorable cosmetic outcome. Relatively low costs and minimized operation time for adjustment and insertion of the cranioplasty implant justify use of this method in small bony defects as well.