999 resultados para Convex Operator


Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B28, 47D15.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the case of real-valued inputs, averaging aggregation functions have been studied extensively with results arising in fields including probability and statistics, fuzzy decision-making, and various sciences. Although much of the behavior of aggregation functions when combining standard fuzzy membership values is well established, extensions to interval-valued fuzzy sets, hesitant fuzzy sets, and other new domains pose a number of difficulties. The aggregation of non-convex or discontinuous intervals is usually approached in line with the extension principle, i.e. by aggregating all real-valued input vectors lying within the interval boundaries and taking the union as the final output. Although this is consistent with the aggregation of convex interval inputs, in the non-convex case such operators are not idempotent and may result in outputs which do not faithfully summarize or represent the set of inputs. After giving an overview of the treatment of non-convex intervals and their associated interpretations, we propose a novel extension of the arithmetic mean based on penalty functions that provides a representative output and satisfies idempotency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studiamo l'operatore di Ornstein-Uhlenbeck e il semigruppo di Ornstein-Uhlenbeck in un sottoinsieme aperto convesso $\Omega$ di uno spazio di Banach separabile $X$ dotato di una misura Gaussiana centrata non degnere $\gamma$. In particolare dimostriamo la disuguaglianza di Sobolev logaritmica e la disuguaglianza di Poincaré, e grazie a queste disuguaglianze deduciamo le proprietà spettrali dell'operatore di Ornstein-Uhlenbeck. Inoltre studiamo l'equazione ellittica $\lambdau+L^{\Omega}u=f$ in $\Omega$, dove $L^\Omega$ è l'operatore di Ornstein-Uhlenbeck. Dimostriamo che per $\lambda>0$ e $f\in L^2(\Omega,\gamma)$ la soluzione debole $u$ appartiene allo spazio di Sobolev $W^{2,2}(\Omega,\gamma)$. Inoltre dimostriamo che $u$ soddisfa la condizione di Neumann nel senso di tracce al bordo di $\Omega$. Questo viene fatto finita approssimazione dimensionale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new method for studying universality of random matrices. Let T-n be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, these ideas lead to conjectured operator limits for the entire family of soft edge distributions. (C) 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, NPL.

If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.

The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M.Hieber, I.Wood: The Dirichlet problem in convex bounded domains for operators with L^\infty-coefficients, Diff. Int. Eq., 20, 7 (2007),721-734.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iantchenko, A., (2007) 'Scattering poles near the real axis for two strictly convex obstacles', Annales of the Institute Henri Poincar? 8 pp.513-568 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood, Ian; Hieber, M., (2007) 'The Dirichlet problem in convex bounded domains for operators with L8-coefficients', Differential and Integral Equations 20 pp.721-734 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 30C45, 30A20, 34A40

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 30C45, 30A20, 34C40

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of immersing a simply connected surface with a prescribed shape operator is discussed. I show that, aside from some special degenerate cases, such as when the shape operator can be realized by a surface with one family of principal curves being geodesic, the space of such realizations is a convex set in an affine space of dimension at most 3. The cases where this maximum dimension of realizability is achieved are analyzed and it is found that there are two such families of shape operators, one depending essentially on three arbitrary functions of one variable and another depending essentially on two arbitrary functions of one variable. The space of realizations is discussed in each case, along with some of their remarkable geometric properties. Several explicit examples are constructed.