968 resultados para Conversão RF-DC
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films
Resumo:
Modern communication systems use multifrequency or broadband antennas in order to provide multiple communication services. One of the biggest problems associated to all these systems comes from their batteries life cycle. Nowadays, great efforts are being undertaken in order to harvest energy from as many places as possible. In addition, if the two cycles of the corresponding wave could be used, it would be good in order to increase the RF-DC power conversion. This paper presents a multifrequency and full wave-rectifying antenna for microwave application
Resumo:
El trabajo presentado en este documento se centra en la temática de la transferencia inalámbrica de energía, concretamente en aplicaciones de campo lejano, para llevar a cabo dicho trabajo nos centraremos en el diseño, implementación y medición de una rectenna operando en la banda ISM concretamente a una frecuencia de 2.45GHz, el objetivo primordial de este trabajo será analizar que parámetros intervienen en la eficiencia de conversión en la etapa de RF-DC a fin de lograr la máxima eficiencia de conversión posible. Para llevar a cabo dicho análisis se emplearán herramientas informáticas, concretamente se hará uso del software AWR Microwave Office, a través del cual se realizarán simulaciones SourcePull a fin de determinar la impedancia óptima de entrada que se le debe presentar a la etapa rectificadora RF-DC para conseguir la máxima eficiencia de conversión, una vez realizadas dichas pruebas se implementará físicamente un circuito rectenna a través del cual realizar medidas de SourcePull mediante un Wide Matching Range Slide Screw Tuner de MAURY MICROWAVE para cotejar las posibles diferencias con los resultados obtenidos en las simulaciones. Tras la fase de pruebas SourcePull se extrapolará una red de entrada en base a los datos obtenidos en las mediciones anteriores y se diseñará y fabricará un circuito rectenna con máxima eficiencia de conversión para un conjunto de valores de potencia de entrada de RF y carga de DC, tras lo cual se analizará la eficiencia del circuito diseñado para diferentes valores de potencia de RF de entrada y carga de DC. Como elemento rectificador emplearemos en nuestro trabajo el diodo Schottky HSMS-2820, los diodos Schottky se caracterizan por tener tiempos de conmutación relativamente bajos y pérdidas en directa reducidas los cual será fundamental a la hora de trabajar con niveles reducidos de potencia de RF de entrada, para implementar el circuito se empleará un substrato FR4 con espesor de 0.8mm para disminuir en la mayor medida posible las pérdidas introducidas por el dieléctrico, se analizarán diferentes posibilidades a la hora de implementar el filtro de RF a la salida del diodo rectificador y finalmente se optará por el empleo de un stub radial ya que será este el que mejor ancho de banda nos proporcione. Los resultados simulados se compararán con los resultados medidos sobre el circuito rectenna para determinar la similitud entre ambos. ABSTRACT. The work presented in this paper focuses on the issue of wireless transfer of energy, particularly applied to far-field applications, to carry out this work we focus on the design, implementation and measurement of a rectenna operating in the ISM band specifically at a frequency of 2.45GHz, the primary objective of this study is to analyze any parameter involved in the RF-DC conversion efficiency in order to achieve the maximum conversion efficiency as possible. Computer analysis tools will be used, particularly AWR Microwave Office software, in order to carry out SourcePull simulations to determine the optimal input impedance which must be presented to the rectifier stage for maximum conversion efficiency, once obtained, a rectenna circuit will be implemented to compute SourcePull measurements, and finally simulated results will be compared to measured results. Once obtained the result, an input network impedance is extrapolated based on data from previous measurements to design and implement a rectenna circuit with high conversion efficiency for a set of RF input power and DC load values , after that, the designed circuit efficiency will be analyzed for different values of RF input power and DC load. In this work a HSMS-2820 Schottky diode will be used as the rectifier , Schottky diodes are characterized by relatively low switching times and reduced direct losses, that properties will be essential when working with low RF input power levels , to implement the circuit a FR4 substrate with 0.8mm thickness is used to reduce as much as possible the dielectric losses, different possibilities to implement the RF filter to the output of the rectifier diode will be analyzed, finally we will opt for the use of a radial stub as this will provide the best bandwidth possible. The simulated results are compared with the results measured on the rectenna circuit to determine the similarity between them.
Resumo:
Classical linear amplifiers such as A, AB and B offer very good linearity suitable for RF power amplifiers. However, its inherent low efficiency limits its use especially in base-stations that manage tens or hundreds of Watts. The use of linearization techniques such as Envelope Elimination and Restoration (EER) allow an increase of efficiency keeping good linearity. This technique requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier. In this paper, several alternatives are analyzed to implement the envelope amplifier based on a cascade association of a switched dc-dc converter and a linear regulator. A simplified version of this approach is also suitable to operate with Envelope Tracking technique.
Resumo:
In the last years, RF power amplifiers are taking advantage of the switched dc-dc converters to use them in several architectures that may improve the efficiency of the amplifier, keeping a good linearity. The use of linearization techniques such as Envelope Elimination and Restoration (EER) and Envelope Tracking (ET) requires a very fast dc-dc power converter to provide variable voltage supply to the power amplifier but theoretically the efficiency can be much higher than using the classical amplifiers belonging to classes A, B or AB. The purpose of this paper is to analyze the state of the art of the power converters used as envelope amplifiers in this application where a fast output voltage variation is required. The power topologies will be explored and several important parameters such as efficiency, bandwidth and output voltage range will be discussed.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
As piperáceas brasileiras apresentam propriedades para serem utilizadas, entre outras aplicações, como inseticidas e antifúngicos. Dentre as piperáceas, pode-se citar a Piper hispidinervum C. DC. De suas folhas e dos talos finos extrai-se um óleo essencial rico em safrol, que é utilizado pela indústria como matéria-prima na manufatura, por exemplo, do piperonal. A sequência natural do processo para a obtenção do piperonal é o de submeter o safrol obtido da concentração do óleo essencial à isomerização para seu correspondente isômero estável chamado isosafrol. Apresenta-se neste artigo, por sua vez, a síntese do isosafrol diretamente do óleo essencial de pimenta-longa (Piper hispidinervium C. DC). Este óleo essencial apresenta o safrol como constituinte majoritário, possibilitando a sua isomerização para a produção de isosafrol, que é empregado nas indústrias farmacêuticas e de fragrâncias. O objetivo deste trabalho é o de apresentar a obtenção do isosafrol sem a necessidade da etapa de separação do safrol do óleo essencial de pimenta-longa. Para tanto, foram realizados ensaios de isomerização do óleo essencial, obtendo-se uma solução contendo 79,4 % da mistura cis, trans-isosafrol. Ressalte-se que o óleo essencial continha 86,4 % de safrol, resultando em alto rendimento na sua conversão a cis, trans-isosafrol de 97,1 %.
Resumo:
O óleo essencial de pimenta longa (Piper hispidinervum C. DC) é rico em safrol, tornando-o suscetível à reação de isomerização para a obtenção de cis, trans-isosafrol. O presente artigo apresenta a etapa de eletroxidação dos isômeros cis, trans-isosafrol advindos da isomerização direta do óleo essencial de pimenta longa, apresentando 99,7% de conversão em isosafrol glicol, o qual é sujeito à oxidação com conversão de 99% em piperonal, este apresentando 84,9% de pureza.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
This poster shows how to efficiently observe high-frequency figures of merit in RF circuits by measuring DC temperature with CMOS-compatible built-in sensors.
Resumo:
In this thesis, analysis of electromagnetic compatibility of high-power photovoltaic solar plant is made. Current standards suitable for photovoltaic applications are given. Measurements of antenna factor for experimental setup are shown. Also, measurements of common mode disturbance voltages in high-power solar plant are given. Importance of DC-side filter is shown. In the last part of the work, electromagnetic simulations are made. These simulations show influence of several factors to EMC of power plant. Based on these simulations and measurements recommendations are given.
Resumo:
Switching power supplies are usually implemented with a control circuitry that uses constant clock frequency turning the power semiconductor switches on and off. A drawback of this customary operating principle is that the switching frequency and harmonic frequencies are present in both the conducted and radiated EMI spectrum of the power converter. Various variable-frequency techniques have been introduced during the last decade to overcome the EMC problem. The main objective of this study was to compare the EMI and steady-state performance of a switch mode power supply with different spread-spectrum/variable-frequency methods. Another goal was to find out suitable tools for the variable-frequency EMI analysis. This thesis can be divided into three main parts: Firstly, some aspects of spectral estimation and measurement are presented. Secondly, selected spread spectrum generation techniques are presented with simulations and background information. Finally, simulations and prototype measurements from the EMC and the steady-state performance are carried out in the last part of this work. Combination of the autocorrelation function, the Welch spectrum estimate and the spectrogram were used as a substitute for ordinary Fourier methods in the EMC analysis. It was also shown that the switching function can be used in preliminary EMC analysis of a SMPS and the spectrum and autocorrelation sequence of a switching function correlates with the final EMI spectrum. This work is based on numerous simulations and measurements made with the prototype. All these simulations and measurements are made with the boost DC/DC converter. Four different variable-frequency modulation techniques in six different configurations were analyzed and the EMI performance was compared to the constant frequency operation. Output voltage and input current waveforms were also analyzed in time domain to see the effect of the spread spectrum operation on these quantities. According to the results presented in this work, spread spectrum modulation can be utilized in power converter for EMI mitigation. The results from steady-state voltage measurements show, that the variable-frequency operation of the SMPS has effect on the voltage ripple, but the ripple measured from the prototype is still acceptable in some applications. Both current and voltage ripple can be controlled with proper main circuit and controller design.