929 resultados para Controllability of systems
Resumo:
In this paper we study the approximate controllability of control systems with states and controls in Hilbert spaces, and described by a second-order semilinear abstract functional differential equation with infinite delay. Initially we establish a characterization for the approximate controllability of a second-order abstract linear system and, in the last section, we compare the approximate controllability of a semilinear abstract functional system with the approximate controllability of the associated linear system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We show the results in Chalishajar [Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst. 344(1) (2007) 12-21] and Chang and Chalishajar [Controllability of mixed Volterra-Fredholm type integro-differential systems in Banach space, J. Franklin Inst., doi:10.1016/j. jfranklin.2008.02.002] are only valid for ordinary differential control systems. As a result the examples provided cannot be recovered as applications of the abstract results. (C) 2008 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To “control” a system is to make it behave (hopefully) according to our “wishes,” in a way compatible with safety and ethics, at the least possible cost. The systems considered here are distributed—i.e., governed (modeled) by partial differential equations (PDEs) of evolution. Our “wish” is to drive the system in a given time, by an adequate choice of the controls, from a given initial state to a final given state, which is the target. If this can be achieved (respectively, if we can reach any “neighborhood” of the target) the system, with the controls at our disposal, is exactly (respectively, approximately) controllable. A very general (and fuzzy) idea is that the more a system is “unstable” (chaotic, turbulent) the “simplest,” or the “cheapest,” it is to achieve exact or approximate controllability. When the PDEs are the Navier–Stokes equations, it leads to conjectures, which are presented and explained. Recent results, reported in this expository paper, essentially prove the conjectures in two space dimensions. In three space dimensions, a large number of new questions arise, some new results support (without proving) the conjectures, such as generic controllability and cases of decrease of cost of control when the instability increases. Short comments are made on models arising in climatology, thermoelasticity, non-Newtonian fluids, and molecular chemistry. The Introduction of the paper and the first part of all sections are not technical. Many open questions are mentioned in the text.
Resumo:
Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.
Resumo:
This paper is concerned with methods for refinement of specifications written using a combination of Object-Z and CSP. Such a combination has proved to be a suitable vehicle for specifying complex systems which involve state and behaviour, and several proposals exist for integrating these two languages. The basis of the integration in this paper is a semantics of Object-Z classes identical to CSP processes. This allows classes specified in Object-Z to be combined using CSP operators. It has been shown that this semantic model allows state-based refinement relations to be used on the Object-Z components in an integrated Object-Z/CSP specification. However, the current refinement methodology does not allow the structure of a specification to be changed in a refinement, whereas a full methodology would, for example, allow concurrency to be introduced during the development life-cycle. In this paper, we tackle these concerns and discuss refinements of specifications written using Object-Z and CSP where we change the structure of the specification when performing the refinement. In particular, we develop a set of structural simulation rules which allow single components to be refined to more complex specifications involving CSP operators. The soundness of these rules is verified against the common semantic model and they are illustrated via a number of examples.
Resumo:
This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.
Resumo:
This paper studies the describing function (DF) of systems constituted by a mass subjected to nonlinear friction. The friction force is decomposed into two components, namely, the viscous and the Coulomb friction. The system dynamics is analyzed in the DF perspective revealing a fractional-order behavior. The reliability of the DF method is evaluated through the signal harmonic contents.
Resumo:
In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global minimizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several iterations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.
Resumo:
This article investigates the limit cycle (LC) prediction of systems with backlash by means of the describing function (DF) when using discrete fractional-order (FO) algorithms. The DF is an approximate method that gives good estimates of LCs. The implementation of FO controllers requires the use of rational approximations, but such realizations produce distinct dynamic types of behavior. This study analyzes the accuracy in the prediction of LCs, namely their amplitude and frequency, when using several different algorithms. To illustrate this problem we use FO-PID algorithms in the control of systems with backlash.
Resumo:
This paper analyses the dynamical properties of systems with backlash and impact phenomena based on the describing function method. The dynamics is illustrated using the Nyquist and Bode plots and the results are compared with those of standard models.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Vapor - liquid equilibrium data for the binary systems: Perfluoromethylcyclohexane + n-Hexane and Perfluoromethylcyclohexane + 1-Hexene were determined at 93.3 KPa and 328.15 K. The vapor pressure for the pure components were also measured to calculate the Antoine constants. The data were correlated by using the Van-Laar, Margules, Wilson, NRTL and UNIQUAC equations. UNIFAC group-contribution parameters between CH, and CF,, and CH,=CH and CF, were also calculated.
Resumo:
Se propone el estudio de galaxias en diferentes tipos de sistemas para lograr un mejor entendimiento de los procesos físicos que actúan en la formación y evolución de estas galaxias. En particular, se analizarán las propiedades de galaxias en cúmulos, grupos difusos, grupos compactos y grupos fósiles. Para el desarrollo de este trabajo, se utilizarán catálogos observacionales públicos y propios, simulaciones cosmológicas combinadas con modelos semianalíticos y catálogos sintéticos basados en dichas simulaciones. Entender el comportamiento de las galaxias pertenecientes a cada clase de sistema permitirá la comparación entre los distintos entornos y posteriormente, la distinción de los diferentes procesos astrofísicos que actúan.
Resumo:
We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.