972 resultados para Continuous phase modulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an alternative to generate continuous phase shift of sinusoidal signals based on the use of super harmonic injection locked oscillators (ILO). The proposed circuit is a second harmonic ILO with varactor diodes as tuning elements. In the locking state, by changing the varactor bias, a phase shift instead of a frequency shift is observed at the oscillator output. By combining two of these circuits, relative phases up to 90 could be achieved. Two prototypes of the circuit have been implemented and tested, a hybrid version working in the range of 200-300 MHz and a multichip module (MCM) version covering the 900¿1000 MHz band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a scheme for 211 optical regeneration based on self-phase modulation in fiber and quasi-continuous filtering. Numerical simulations demonstrate the possibility of increasing the transmission reach from 3500 to more than 6000 km at 10 Gb/s using 100-km spans. Spectral broadening is shown to be small using this technique, indicating its suitability for wavelength-division-multiplexing regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thereis now growing evidencethatthe hippocampus generatestheta rhythmsthat can phase biasfast neural oscillationsinthe neocortex, allowing coordination of widespread fast oscillatory populations outside limbic areas. A recent magnetoencephalographic study showed that maintenance of configural-relational scene information in a delayed match-to-sample (DMS) task was associated with replay of that information during the delay period. The periodicity of the replay was coordinated by the phase of the ongoing theta rhythm, and the degree of theta coordination during the delay period was positively correlated with DMS performance. Here, we reanalyzed these data to investigate which brain regions were involved in generating the theta oscillations that coordinated the periodic replay of configural- relational information. We used a beamformer algorithm to produce estimates of regional theta rhythms and constructed volumetric images of the phase-locking between the local theta cycle and the instances of replay (in the 13- 80 Hz band). We found that individual differences in DMS performancefor configural-relational associations were relatedtothe degree of phase coupling of instances of cortical reactivations to theta oscillations generated in the right posterior hippocampus and the right inferior frontal gyrus. This demonstrates that the timing of memory reactivations in humans is biased toward hippocampal theta phase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A forward - biased point contact germanium signal diode placed inside a waveguide section along the E -vector is found to introduce significant phase shift of microwave signals . The usefulness of the arrangement as a phase modulator for microwave carriers is demonstrated. While there is a less significant amplitude modulation accompanying phase modulation , the insertion losses are found to be negligible. The observations can be explained on the basis of the capacitance variation of the barrier layer with forward current in the diode

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach for studying photorefractive gratings in two-wave mixing experiments by a phase modulation technique is presented. The introduction of a large-amplitude, high-frequency sinusoidal phase modulation in one of the input beams blurs the interference pattern and provides powerful harmonic signals for accurate measurements of the grating diffraction efficiency eta and the output phase shift rho between the transmitted and diffracted waves. The blurring of the light fringes can be used to suppress the higher spatial harmonics of the grating, allowing a space-charge field with sinusoidal profile to be recorded. Although the presence of such a strong phase modulation affects the beam coupling in a rather complicated way, it is shown that for the special case of equal intensity input beams, the effect of the phase modulation on eta and rho is reduced to a weakening of the coupling strength. The potentialities of the technique are illustrated in a study of refractive-index waves excited by running interference patterns in a Bi12TiO20 crystal. Expressions for the diffraction efficiency and the output phase shift are derived and used to match numerically calculated curves to the experimental data. The theoretical model is supported by the very good data fitting and allows the computation of important material parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The J(1)...J(3) is a recent optical method for linear readout of dynamic phase modulation index in homodyne interferometers. In this work, the J(1)... J(3) method is applied to measure voltage in an optical voltage sensor. Based on the classical J(1)...J(4) method, the J(1)... J(3) technique shows to be more stable to phase drift and simpler for implementation than the original one. The sensor dynamic range is enhanced. The agreement between theoretical and experimental results, based on 1/f noise, is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel method to generate ultrawideband (UWB) doublets is proposed and experimentally demonstrated, which is based on exploiting the cross-phase modulation in a semiconductor optical amplifier (SOA). The key component is an integrated SOA Mach-Zehnder interferometer pumped with an optical carrier modulated by a Gaussian pulse. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses by tuning the SOA currents to different values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present article, an innovative approach for generation of an UWB monocycle is proposed and experimentally demonstrated. The proposed design features the combination of an interferometric device (SOA-Mach Zehnder interferometer) with an optical processor unit. The fusion of such components permits to generate, combine and customize UWB pulses. An optical pulse is used as pump signal and two optical carriers represent and the optical input of the system. The selection of a specific wavelength and therefore of a particular port provides the possibility of modifying the systems output pulse polarity. The capacity of transmitting several data sequence has been also evidenced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis presents results obtained from both numerical simulation and laboratory experimentation (both of which were carried out by the author). When data is propagated along an optical transmission line some timing irregularities can occur such as timing jitter and phase wander. Traditionally these timing problems would have been corrected by converting the optical signal into the electrical domain and then compensating for the timing irregularity before converting the signal back into the optical domain. However, this thesis posses a potential solution to the problem by remaining completely in the optical domain, eliminating the need for electronics. This is desirable as not only does optical processing reduce the latency effect that their electronic counterpart have, it also holds the possibility of an increase in overall speed. A scheme was proposed which utilises the principle of wavelength conversion to dynamically convert timing irregularities (timing jitter and phase wander) into a change in wavelength (this occurs on a bit-by-bit level and so timing jitter and phase wander can be compensated for simultaneously). This was achieved by optically sampling a linearly chirped, locally generated clock source (the sampling function was achieved using a nonlinear optical loop mirror). The data, now with each bit or code word having a unique wavelength, is then propagated through a dispersion compensation module. The dispersion compensation effectively re-aligns the data in time and so thus, the timing irregularities are removed. The principle of operation was tested using computer simulation before being re-tested in a laboratory environment. A second stage was added to the device to create 3R regeneration. The second stage is used to simply convert the timing suppressed data back into a single wavelength. By controlling the relative timing displacement between stage one and stage two, the wavelength that is finally produced can be controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional high speed machinery actuators are powered and coordinated by mechanical linkages driven from a central drive, but these linkages may be replaced by independently synchronised electric drives. Problems associated with utilising such electric drives for this form of machinery were investigated. The research concentrated on a high speed rod-making machine, which required control of high inertias (0.01-0.5kgm2), at continuous high speed (2500 r/min), with low relative phase errors between two drives (0.0025 radians). Traditional minimum energy drive selection techniques for incremental motions were not applicable to continuous applications which require negligible energy dissipation. New selection techniques were developed. A brushless configuration constant enabled the comparison between seven different servo systems; the rate earth brushless drives had the best power rates which is a performance measure. Simulation was used to review control strategies, such that a microprocessor controller with a proportional velocity loop within a proportional position loop with velocity feedforward was designed. Local control schemes were investigated as means of reducing relative errors between drives: the slave of a master/slave scheme compensates for the master's errors: the matched scheme has drives with similar absolute errors so the relative error is minimised, and the feedforward scheme minimises error by adding compensation from previous knowledge. Simulation gave an approximate velocity loop bandwidth and position loop gain required to meet the specification. Theoretical limits for these parameters were defined in terms of digital sampling delays, quantisation, and system phase shifts. Performance degradation due to mechanical backlash was evaluated. Thus any drive could be checked to ensure that the performance specification could be realised. A two drive demonstrator was commissioned with 0.01kgm2 loads. By use of simulation the performance of one drive was improved by increasing the velocity loop bandwidth fourfold. With the master/slave scheme relative errors were within 0.0024 radians at a constant 2500 r/min for two 0.01 kgm^2 loads.