998 resultados para Conductivity, hydraulic


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50 = 55 µm) and sand (D50 = 300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) "the layering experiment": in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2 - 3 mm; 0.5 - 3.7 wt %, dry weight in a layer 10 cm deep); and (2) "the mixing experiment" where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07 - 0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eight whole-core samples from Ocean Drilling Program Site 1244, Hydrate Ridge, Cascadia continental margin, were provided to Massachusetts Institute of Technology (Cambridge, Massachusetts, USA) for geotechnical characterization. The samples were collected from depths ranging from 5 to 136 meters below seafloor (mbsf). Seven of the eight whole-core samples were located within the gas hydrate stability zone, whereas the eighth sample was located in the free gas zone. Atterberg limits testing showed that the average liquid limit of the soil is 81% and the average plastic limit is 38%, giving an average plasticity index of 43%. The liquid limit is sensitive to oven drying, shown by a drop in liquid limit to 64% when tests were performed on an oven-dried sample. Loss on ignition averages 5.45 wt%. Constant rate of strain consolidation (CRSC) tests were performed to obtain the compression characteristics of the soil, as well as to determine the stress history of the site. CRSC tests also provided hydraulic conductivity and coefficient of consolidation characteristics for these sediments. The compression ratio (Cc) ranges from 0.340 to 0.704 (average = 0.568). Cc is fairly constant to a depth of 79 mbsf, after which Cc decreases downhole. The recompression ratio (Cr) ranges from 0.035 to 0.064 (average = 0.052). Cr is constant throughout the depth range. In situ hydraulic conductivity varies between 1.5 x 10**-7 and 3 x 10**-8 cm/s and shows no trend with depth. Ko-consolidated undrained compression/extension (CKoUC/E) tests were also performed to determine the peak undrained shear strength, stress-strain curve, and friction angle. The normalized undrained strength ranges from 0.29 to 0.35. The friction angle ranges from 27 to 37. Because of the limited amount of soil, CRSC and CKoUC/E tests were also conducted on resedimented specimens.