998 resultados para Concept vector
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.
Resumo:
The native cottontail rabbit papillomavirus (CRPV) L1 capsid protein gene was expressed transgenically via Agrobacterium tumefaciens transformation and transiently via a tobacco mosaic virus (TMV) vector in Nicotiana spp. L1 protein was detected in concentrated plant extracts at concentrations up to 1.0 mg/kg in transgenic plants and up to 0.4 mg/kg in TMV-infected plants. The protein did not detectably assemble into viruslike particles; however, immunoelectron microscopy showed presumptive pentamer aggregates, and extracted protein reacted with conformation-specific and neutralizing monoclonal antibodies. Rabbits were injected with concentrated protein extract with Freund's incomplete adjuvant. All sera reacted with baculovirus-produced CRPV L1; however, they did not detectably neutralize infectivity in an in vitro assay. Vaccinated rabbits were, however, protected against wart development on subsequent challenge with live virus. This is the first evidence that a plant-derived papillomavirus vaccine is protective in an animal model and is a proof of concept for human papillomavirus vaccines produced in plants. Copyright © 2006, American Society for Microbiology. All Rights Reserved.
Resumo:
This paper proposes a sensorless vector control scheme for general-purpose induction motor drives using the current error space phasor-based hysteresis controller. In this paper, a new technique for sensorless operation is developed to estimate rotor voltage and hence rotor flux position using the stator current error during zero-voltage space vectors. It gives a comparable performance with the vector control drive using sensors especially at a very low speed of operation (less than 1 Hz). Since no voltage sensing is made, the dead-time effect and loss of accuracy in voltage sensing at low speed are avoided here, with the inherent advantages of the current error space phasor-based hysteresis controller. However, appropriate device on-state drops are compensated to achieve a steady-state operation up to less than 1 Hz. Moreover, using a parabolic boundary for current error, the switching frequency of the inverter can be maintained constant for the entire operating speed range. Simple sigma L-s estimation is proposed, and the parameter sensitivity of the control scheme to changes in stator resistance, R-s is also investigated in this paper. Extensive experimental results are shown at speeds less than 1 Hz to verify the proposed concept. The same control scheme is further extended from less than 1 Hz to rated 50 Hz six-step operation of the inverter. Here, the magnetic saturation is ignored in the control scheme.
Resumo:
A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.
Resumo:
The paper proposes a study of symmetrical and related components, based on the theory of linear vector spaces. Using the concept of equivalence, the transformation matrixes of Clarke, Kimbark, Concordia, Boyajian and Koga are shown to be column equivalent to Fortescue's symmetrical-component transformation matrix. With a constraint on power, criteria are presented for the choice of bases for voltage and current vector spaces. In particular, it is shown that, for power invariance, either the same orthonormal (self-reciprocal) basis must be chosen for both voltage and current vector spaces, or the basis of one must be chosen to be reciprocal to that of the other. The original �¿, ��, 0 components of Clarke are modified to achieve power invariance. For machine analysis, it is shown that invariant transformations lead to reciprocal mutual inductances between the equivalent circuits. The relative merits of the various components are discussed.
Resumo:
This study proposes an inverter circuit topology capable of generating multilevel dodecagonal (12-sided polygon) voltage space vectors by the cascaded connection of two-level and three-level inverters. By the proper selection of DC-link voltages and resultant switching states for the inverters, voltage space vectors whose tips lie on three concentric dodecagons, are obtained. A rectifier circuit for the inverter is also proposed, which significantly improves the power factor. The topology offers advantages such as the complete elimination of the fifth and seventh harmonics in phase voltages and an extension of the linear modulation range. In this study, a simple method for the calculation of pulse width modulation timing was presented along with extensive simulation and experimental results in order to validate the proposed concept.
Resumo:
Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18 sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three level inverters. By proper selection of DC link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector based PWM techniques are the complete elimination of fifth, seventh, eleventh and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Matlab simulation results and experimental results have been presented in this paper to validate the proposed concept.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.
Resumo:
In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.
Resumo:
The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.
Resumo:
Based on the ray theory and Longuet-Higgins's linear,model of sea waves, the joint distribution of wave envelope and apparent wave number vector is established. From the joint distribution, we define a new concept, namely the outer wave number spectrum, to describe the outer characteristics of ocean waves. The analytical form of the outer wave number spectrum, the probability distributions of the apparent wave number vector and its components are then derived. The outer wave number spectrum is compared with the inner wave number spectrum for the average status of wind-wave development corresponding to a peakness factor P = 3. Discussions on the similarity and difference between the outer wave number spectrum and inner one are also presented in the paper. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
In order to formalize and extend on previous ad-hoc analysis and synthesis methods a theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to achieve DM transmitter characteristics. An orthogonal vector approach is proposed which allows the artificial orthogonal noise concept derived from information theory to be brought to bear on DM analysis and synthesis. The orthogonal vector method is validated and discussed via bit error rate (BER) simulations.
Resumo:
We derive a new representation for a function as a linear combination of local correlation kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity principles and Support Vector Machines. We first review previous results for the approximation of a function from discrete data (Girosi, 1998) in the context of Vapnik"s feature space and dual representation (Vapnik, 1995). We apply them to show 1) that a standard regularization functional with a stabilizer defined in terms of the correlation function induces a regression function in the span of the feature space of classical Principal Components and 2) that there exist a dual representations of the regression function in terms of a regularization network with a kernel equal to a generalized correlation function. We then describe the main observation of the paper: the dual representation in terms of the correlation function can be sparsified using the Support Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998). In addition to extending the close relations between regularization, Support Vector Machines and sparsity, our work also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss the relation between our results, which are about regression, and the different problem of pattern classification.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.