895 resultados para Concentração de íons de hidrôgenio
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As soluções aquosas obtidas após o tratamento final de efluentes de processos de eletrodeposição de Cd contém baixas concentrações de íons Cd2+. Neste trabalho determinaram-se as melhores condições para a utilização de eletrodos de carbono vítreo reticulado (CVR) no polimento destas soluções. A eletrodeposição do íon Cd2+ sobre eletrodo de carbono vítreo reticulado de porosidades distintas, 30, 60 e 100 ppi, com e sem recobrimento com polipirrol, foi investigada em soluções aquosas aeradas de ácido sulfúrico e sulfato de potássio em pH 4,8. Sob condições potenciostáticas, uma elevada eficiência de remoção foi obtida para soluções contendo 5 e 10 mg L-1 de íon Cd2+, na faixa de potenciais entre –0,9 e –1,1 V para CVR e em –3,0 V para CVR recoberto com polipirrol (CVR-PPy0). Após cada experimento de eletrodeposição, a diminuição da concentração do íon Cd2+ no eletrólito foi monitorada por voltametria de redissolução anódica. Neste experimenteo, empregando um eletrodo de gota pendente de mercúrio sendo estes resultados comparados com medidas por espectrometria de emissão atômica (ICP). Para o eletrodo de CVR, neste intervalo de potenciais, -0,9 e –1,1 V, a eletrodeposição do íon cádmio é controlada por transporte de massa e a concentração de íons cádmio varia exponencialmente com o tempo, seguindo uma cinética de pseudo primeira ordem. Para a concentração 10 mg L-1 e usando eletrodo de CVR 30 ppi, as eficiências de corrente e de remoção determinadas a -1,1 V após 30 minutos de eletrólise foram, 38 % e 97% , respectivamente. Para eletrodo de CVR 60 ppi foram encontrados 30 % e 99 %, respectivamente. Para o eletrodo de CVR-PPy0 a maior eficiência de remoção encontrada foi de 84% após 90 minutos de eletrólise em –3,0 V, sendo a eficiência de corrente menor do que 2%. A presença de Cd metálico depositado na superfície do eletrodo de CVR e CVR-PPy0 depois da redução em –1,1 V e –3,0 V, respectivamente, foi confirmada por análise de Microscopia Eeletrônica de Varredura (MEV) e espectrometria de energia dispersiva (EDS).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Pastas à base de hidróxido de cálcio: avaliação da biocompatibilidade, pH e liberação de íons cálcio
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os métodos de irrigação mais recomendados para a cultura do mamoeiro têm sido os métodos pressurizados, isto é, a irrigação por aspersão e localizada. Dentre os sistemas de irrigação por aspersão, os sistemas autopropelidos (Figura 1a) e os pivôs centrais (Figura 1b) têm sido os mais utilizados. Em se tratando de sistemas de irrigação localizada, a fertirrigação via microaspersão deve levar em conta a distribuição de água pelo microaspersor, que segue um padrão conforme a Figura 2, onde a maior quantidade de água cai próximo do emissor reduzindo-se à medida em que se afasta deste. A concentração de íons da água de irrigação é uniforme, isto é, apresenta pequena variação na área molhada na superfície do solo, consequentemente, a distribuição do fertilizante é desuniforme, ou seja, a região mais próxima do emissor recebe maior quantidade de fertilizante comparada às regiões mais afastadas do emissor.
Resumo:
The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition
Resumo:
Diabetes mellitus has been associated with bone metabolism alterations, such as osteopenia and osteporosis. So, the search of new anabolic agents promote bone mass gain can be important to prevent osteoporosis. The aim of this study was evaluate zinc anabolic effect over bone in diabetic and post-menopausal osteopenic models. Diabetes was induced by STZ (45mg/Kg of body weight) administration and post-menopausal by bilateral ovariectomy. Adults female Wistar rats (n=65) were divided in 5 groups: control group (n=15), ovariectomized without (n=15) and with zinc supplementation (n=10) groups, diabetic and ovarioctomized without (n=15) and with zinc supplementation (n=10) groups. Studied periods had been untill 90 days. Diabetic condition was confirmed hiperglicemic state and alterations of state with polyuria, polyphagia, polydipsia and glucosuria. Histomorphometric analysis showed that zinc supplementation increased trabecular thickness and reduced trabecular distance significantly in diabetic groups with similar values to those showed in control group. Correlation analysis of histomorphometric parameters with serum glucose concentration showed that more time in hyperglycemia more bone damage, as well as, zinc supplementation contributed to prevent this damage. Elevated serum glucose caused hyperzincuria, phosphaturia and calciuria. Zinc supplementation promoted increased levels of calcium and phosphorous ions in 90th days diabetic group. No alteration was observed by ovariectomy in mineral (Ca, P and Zn) serum and urine concentrations. Total serum Alkaline Phosphatase activity increased in diabetic groups, supplemented or not, compared with control group. However, Tartarate-Resistant Acid Phosphatase, magnesium and serum zinc did not altered in studied groups. Serum albumin was reduced only in diabetic groups. Serum creatinine was unaltered. These results support the hypotesis that zinc can be used to prevent and treat diabetic and post-menopausal osteopenia
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
One of the main impacts to the environment is the water pollution, where the industrial sector is one of the main sources of this problem. In order to search for a solution, the industrial sector is looking forward to new technologies to treat its wastewaters with the goal to reuse the water in the own process. In this mode, the treatment presents a reduction in its costs with the water suply. One of these technologies that are getting more and more applications is the advanced oxidative processes (AOP´s). In this work two industrial wastewaters have been studied, i.e., containing polymers and pharmacus. In the case of the wastewaters with polymers the UV/H2O2 process has been applied with a systematic series of experiments, using irradiation from a mercury lamp and also solar. The following variables of the UV/H2O2 process for the polymers wastewaters have been studied systematically with the lamp reactor: mode of addition of hydrogen peroxide, temperature, time of reaction, hydrogen peroxide concentration and power of the lamp (80, 125, 250 and 400W). The results demonstrated to be satisfactory, obtaining rates of organic charge removal of 100% in 120 minutes of reaction. The studied variables for the experiments with solar irradiation using polymers wastewaters were only the time of reaction, the mode of addition and concentration of the hydrogen peroxide. The results with the solar irradiation demonstrated to be not satisfactory, reaching maximum of 22% of TOC removal in 240 minutes of reaction. This is in accordance with the fact that the solar source has only 5% of low UV irradiation. With respect to the photodegradation of the pharmacus wastewaters, the process UV/H2O2 and photo-Fenton have been applied. As a source of photons, in this case, a mercury UV lamp of 80 W has been used. The studied variables for the experiments with artificial irradiation with the pharmacus wastewaters were: initial concentration of the pollutant, concentration of Fe2+ and time of reaction. The results demonstrated a degree of degradation fairly satisfactory, showing a maximum conversion value of 46% in 120 minutes
Resumo:
A mistura de uréia com fertilizantes de características ácidas aplicada ao solo pode aumentar a concentração de íons H+ próximos do grânulo e promover a redução da perda de N por volatilização. O experimento foi desenvolvido em vasos com 15 kg de Latossolo Vermelho textura média, sob túnel plástico, em Botucatu (SP), nos quais foram crescidas plantas de milho (duas plantas por vaso) até o pendoamento (66 dias após a emergência - DAE). Como tratamentos foi realizada a adubação (100 mg dm-3 N), no estádio de cinco folhas (30 DAE) utilizando os seguintes fertilizantes ou misturas físicas: (1) uréia (UR), enriquecida com 15N; (2) sulfato de amônio (SA), enriquecido com 15N; (3) sulfnitro (80% de N-UR e 20% de N-SA no mesmo grânulo); (4) mistura de UR (80% N) e SA (20% N e enriquecido com 15N); (5) mistura de UR (50% N) e SA (50% N), enriquecidos com 15N; (6) mistura de UR (50% N) e SA (50% N e enriquecido com 15N), (7) mistura de UR (50% N) e SA (50% N), enriquecido com 15N, diluídos em água (solução contendo 3% de N) e mais um tratamento que não recebeu N. A mistura de UR e SA não promoveu aumento na recuperação do N da uréia na planta de milho. do total de 15N-fertilizante aplicado, aproximadamente, 67% foram recuperados pela planta de milho (29% nas folhas, 25% no caule e 13% nas raízes) e 6% no solo, com uma perda estimada de 27%. O 15N da uréia foi recuperado em menor quantidade no caule em relação ao N do sulfato de amônio.
Resumo:
This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.
Resumo:
In recent years, studies about the physicochemical properties of mixed oxides, call attention of the scientific community, properties like as piezoelectricity, photoluminescence, or applications as catalysts, arise in these compounds, when their chemical compositions are modified, in this context some routes are employed in the synthesis of these materials, among which can be cited these methods: ceramic, combustion, co-precipitation, Pechini or polymeric precursor method, hydrothermal, sol-gel; these routes are divided into traditional routes or chemical routes. In this work were synthesized oxides with variable composition, from the thermal decomposition of titanium, cobalt, nickel and praseodymium nitrilotriacetates. The nitrilotriacetates were characterized by IR Spectroscopy (FTIR), Thermogravimetric (TG/ DTG) and Differential Scanning Calorimetry (DSC), while oxides have been characterized by X-ray diffraction (XRD), Spectrofluorimetry and IR Spectroscopy (FTIR). From FTIR data, it was demonstrated that the displacement of the band corresponding to the carboxylate group (νCOOH) at 1712 cm-1, present in nitrilotriacetic acid (H3NTA), for 1680-1545 cm-1, these stretches are characteristics of coordinated nitrilotriacetates, By thermal analysis (TG/DTG /DSC), it was suggested, that in an oxidizing atmosphere (air) oxides are obtained at lower temperatures than in an inert atmosphere N2(g). By results from X-ray Diffraction (XRD), it was determinated that the oxides are crystalline and the predominant phases obtained are summarized titanate phases rutile and ilmenite. By fluorimetry was observed that the intensity of emission bands are directly proportional to the concentration of ions Ni2+, Co2+ and Pr3+, and IR spectroscopy (FTIR) from oxides, demonstrated the disappearance of characteristic bands by nitrilotriacetates, determining the complete decomposition of the nitrilotriacetates in oxides