958 resultados para Computer-driven foot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work deals with two related areas: processing of visual information in the central nervous system, and the application of computer systems to research in neurophysiology.

Certain classes of interneurons in the brain and optic lobes of the blowfly Calliphora phaenicia were previously shown to be sensitive to the direction of motion of visual stimuli. These units were identified by visual field, preferred direction of motion, and anatomical location from which recorded. The present work is addressed to the questions: (1) is there interaction between pairs of these units, and (2) if such relationships can be found, what is their nature. To answer these questions, it is essential to record from two or more units simultaneously, and to use more than a single recording electrode if recording points are to be chosen independently. Accordingly, such techniques were developed and are described.

One must also have practical, convenient means for analyzing the large volumes of data so obtained. It is shown that use of an appropriately designed computer system is a profitable approach to this problem. Both hardware and software requirements for a suitable system are discussed and an approach to computer-aided data analysis developed. A description is given of members of a collection of application programs developed for analysis of neuro-physiological data and operated in the environment of and with support from an appropriate computer system. In particular, techniques developed for classification of multiple units recorded on the same electrode are illustrated as are methods for convenient graphical manipulation of data via a computer-driven display.

By means of multiple electrode techniques and the computer-aided data acquisition and analysis system, the path followed by one of the motion detection units was traced from open optic lobe through the brain and into the opposite lobe. It is further shown that this unit and its mirror image in the opposite lobe have a mutually inhibitory relationship. This relationship is investigated. The existence of interaction between other pairs of units is also shown. For pairs of units responding to motion in the same direction, the relationship is of an excitatory nature; for those responding to motion in opposed directions, it is inhibitory.

Experience gained from use of the computer system is discussed and a critical review of the current system is given. The most useful features of the system were found to be the fast response, the ability to go from one analysis technique to another rapidly and conveniently, and the interactive nature of the display system. The shortcomings of the system were problems in real-time use and the programming barrier—the fact that building new analysis techniques requires a high degree of programming knowledge and skill. It is concluded that computer system of the kind discussed will play an increasingly important role in studies of the central nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The osteochondral defect is a classical model for a multiple-tissue problem[1]. Tissue engineering of either bone or cartilage imposes different demands on a scaffold concerning porosity, pore size and interconnectivity. Furthermore, local release of tissue-specific growth factors necessitates a tailored architecture. For the fabrication of an osteochondral scaffold with region specific architecture, an advanced technique is required. Stereolithography is a rapid prototyping technique that allows for the creation of such 3D polymer objects with well-defined architecture. Its working principle is the partial irradiation of a resin, causing a liquid-solid transition. By irradiating this resin by a computer-driven light source, a solid 3D object is constructed layer by layer. To make biodegradable polymers applicable in stereolithography, low-molecular weight polymers have to be functionalised with double bonds to enable photo-initiated crosslinking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ethylene gas is burnt and the carbon soot particles are thermophoretically collected using a home-built equipment where the fuel air injection and intervention into the 7.5-cm long flame are controlled using three small pneumatic cylinders and computer-driven controllers. The physical and mechanical properties and tribological performance of the collected soot are compared with those of carbon black and diesel soot. The crystalline structures of the nanometric particles generated in the flame, as revealed by high-resolution transmission electron studies, are shown to vary from the flame root to the exhaust. As the particle journeys upwards the flame, through a purely amorphous coagulated phase at the burner nozzle, it leads to a well-defined crystalline phase shell in the mid-flame zone and to a disordered phase consisting of randomly distributed short-range crystalline order at the exhaust. In the mid-flame region, a large shell of radial-columnar order surrounds a dense amorphous core. The hardness and wear resistance as well as friction coefficient of the soot extracted from this zone are low. The mechanical properties characteristics of this zone may be attributed to microcrystalline slip. Moving towards the exhaust, the slip is inhibited and there is an increase in hardness and friction compared to those in the mid-flame zone. This study of the comparison of flame soot to carbon black and diesel soot is further extended to suggest a rationale based on additional physico-chemical study using micro-Raman spectroscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background:Mechanical ventilation is a critical component of paediatric intensive care therapy. It is indicated when the patient’s spontaneous ventilation is inadequate to sustain life. Weaning is the gradual reduction of ventilatory support and the transfer of respiratory control back to the patient. Weaning may represent a large proportion of the ventilatory period. Prolonged ventilation is associated with significant morbidity, hospital cost, psychosocial and physical risks to the child and even death. Timely and effective weaning may reduce the duration of mechanical ventilation and may reduce the morbidity and mortality associated with prolonged ventilation. However, no consensus has been reached on criteria that can be used to identify when patients are ready to wean or the best way to achieve it.Objectives:To assess the effects of weaning by protocol on invasively ventilated critically ill children. To compare the total duration of invasive mechanical ventilation of critically ill children who are weaned using protocols versus those weaned through usual (non-protocolized) practice. To ascertain any differences between protocolized weaning and usual care in terms of mortality, adverse events, intensive care unit length of stay and quality of life.Search methods:We searched the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library, Issue 10, 2012), MEDLINE (1966 to October 2012), EMBASE (1988 to October 2012), CINAHL (1982 to October 2012), ISI Web of Science and LILACS. We identified unpublished data in the Web of Science (1990 to October 2012), ISI Conference Proceedings (1990 to October 2012) and Cambridge Scientific Abstracts (earliest to October 2012). We contacted first authors of studies included in the review to obtain further information on unpublished studies or work in progress. We searched reference lists of all identified studies and review papers for further relevant studies. We applied no language or publication restrictions.Selection criteriaWe included randomized controlled trials comparing protocolized weaning (professional-led or computer-driven) versus non-protocolized weaning practice conducted in children older than 28 days and younger than 18 years.Data collection and analysis:Two review authors independently scanned titles and abstracts identified by electronic searching. Three review authors retrieved and evaluated full-text versions of potentially relevant studies, independently extracted data and assessed risk of bias.Main results:We included three trials at low risk of bias with 321 children in the analysis. Protocolized weaning significantly reduced total ventilation time in the largest trial (260 children) by a mean of 32 hours (95% confidence interval (CI) 8 to 56; P = 0.01). Two other trials (30 and 31 children, respectively) reported non-significant reductions with a mean difference of -88 hours (95% CI -228 to 52; P = 0.2) and -24 hours (95% CI -10 to 58; P = 0.06). Protocolized weaning significantly reduced weaning time in these two smaller trials for a mean reduction of 106 hours (95% CI 28 to 184; P = 0.007) and 21 hours (95% CI 9 to 32; P < 0.001). These studies reported no significant effects for duration of mechanical ventilation before weaning, paediatric intensive care unit (PICU) and hospital length of stay, PICU mortality or adverse events.Authors' conclusions:Limited evidence suggests that weaning protocols reduce the duration of mechanical ventilation, but evidence is inadequate to show whether the achievement of shorter ventilation by protocolized weaning causes children benefit or harm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: This is an update of a review last published in Issue 5, 2010, of The Cochrane Library. Reducing weaning time is desirable in minimizing potential complications from mechanical ventilation. Standardized weaning protocols are purported to reduce time spent on mechanical ventilation. However, evidence supporting their use in clinical practice is inconsistent. Objectives: The first objective of this review was to compare the total duration of mechanical ventilation of critically ill adults who were weaned using protocols versus usual (non-protocolized) practice.The second objective was to ascertain differences between protocolized and non-protocolized weaning in outcomes measuring weaning duration, harm (adverse events) and resource use (intensive care unit (ICU) and hospital length of stay, cost).The third objective was to explore, using subgroup analyses, variations in outcomes by type of ICU, type of protocol and approach to delivering the protocol (professional-led or computer-driven). Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE (1950 to January 2014), EMBASE (1988 to January 2014), CINAHL (1937 to January 2014), LILACS (1982 to January 2014), ISI Web of Science and ISI Conference Proceedings (1970 to February 2014), and reference lists of articles. We did not apply language restrictions. The original search was performed in January 2010 and updated in January 2014.Selection criteriaWe included randomized controlled trials (RCTs) and quasi-RCTs of protocolized weaning versus non-protocolized weaning from mechanical ventilation in critically ill adults. Data collection and analysis: Two authors independently assessed trial quality and extracted data. We performed a priori subgroup and sensitivity analyses. We contacted study authors for additional information. Main results: We included 17 trials (with 2434 patients) in this updated review. The original review included 11 trials. The total geometric mean duration of mechanical ventilation in the protocolized weaning group was on average reduced by 26% compared with the usual care group (N = 14 trials, 95% confidence interval (CI) 13% to 37%, P = 0.0002). Reductions were most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. Weaning duration was reduced by 70% (N = 8 trials, 95% CI 27% to 88%, P = 0.009); and ICU length of stay by 11% (N = 9 trials, 95% CI 3% to 19%, P = 0.01). There was significant heterogeneity among studies for total duration of mechanical ventilation (I2 = 67%, P < 0.0001) and weaning duration (I2 = 97%, P < 0.00001), which could not be explained by subgroup analyses based on type of unit or type of approach. Authors' conclusions: There is evidence of reduced duration of mechanical ventilation, weaning duration and ICU length of stay with use of standardized weaning protocols. Reductions are most likely to occur in medical, surgical and mixed ICUs, but not in neurosurgical ICUs. However, significant heterogeneity among studies indicates caution in generalizing results. Some study authors suggest that organizational context may influence outcomes, however these factors were not considered in all included studies and could not be evaluated. Future trials should consider an evaluation of the process of intervention delivery to distinguish between intervention and implementation effects. There is an important need for further development and research in the neurosurgical population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: We studied intra-individual and inter-individual variability of two online sedation monitors, BIS and Entropy, in volunteers under sedation. METHODS: Ten healthy volunteers were sedated in a stepwise manner with doses of either midazolam and remifentanil or dexmedetomidine and remifentanil. One week later the procedure was repeated with the remaining drug combination. The doses were adjusted to achieve three different sedation levels (Ramsay Scores 2, 3 and 4) and controlled by a computer-driven drug-delivery system to maintain stable plasma concentrations of the drugs. At each level of sedation, BIS and Entropy (response entropy and state entropy) values were recorded for 20 minutes. Baseline recordings were obtained before the sedative medications were administered. RESULTS: Both inter-individual and intra-individual variability increased as the sedation level deepened. Entropy values showed greater variability than BIS(R) values, and the variability was greater during dexmedetomidine/remifentanil sedation than during midazolam/remifentanil sedation. CONCLUSIONS: The large intra-individual and inter-individual variability of BIS and Entropy values in sedated volunteers makes the determination of sedation levels by processed electroencephalogram (EEG) variables impossible. Reports in the literature which draw conclusions based on processed EEG variables obtained from sedated intensive care unit (ICU) patients may be inaccurate due to this variability. TRIAL REGISTRATION: clinicaltrials.gov Nr. NCT00641563.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCR) are amongst the best studied and most functionally diverse types of cell-surface protein. The importance of GPCRs as mediates or cell function and organismal developmental underlies their involvement in key physiological roles and their prominence as targets for pharmacological therapeutics. In this review, we highlight the requirement for integrated protocols which underline the different perspectives offered by different sequence analysis methods. BLAST and FastA offer broad brush strokes. Motif-based search methods add the fine detail. Structural modelling offers another perspective which allows us to elucidate the physicochemical properties that underlie ligand binding. Together, these different views provide a more informative and a more detailed picture of GPCR structure and function. Many GPCRs remain orphan receptors with no identified ligand, yet as computer-driven functional genomics starts to elaborate their functions, a new understanding of their roles in cell and developmental biology will follow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Food service on a cruise ship presents some unique challenges. A review of food service in the cruise industry is presented along with some ideas on the future. The case is made for a change in traditional operations with a move toward greater use of computer-driven management techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To analyze computer-assisted diagnostics and virtual implant planning and to evaluate the indication for template-guided flapless surgery and immediate loading in the rehabilitation of the edentulous maxilla. MATERIALS AND METHODS: Forty patients with an edentulous maxilla were selected for this study. The three-dimensional analysis and virtual implant planning was performed with the NobelGuide software program (Nobel Biocare, Göteborg, Sweden). Prior to the computer tomography aesthetics and functional aspects were checked clinically. Either a well-fitting denture or an optimized prosthetic setup was used and then converted to a radiographic template. This allowed for a computer-guided analysis of the jaw together with the prosthesis. Accordingly, the best implant position was determined in relation to the bone structure and prospective tooth position. For all jaws, the hypothetical indication for (1) four implants with a bar overdenture and (2) six implants with a simple fixed prosthesis were planned. The planning of the optimized implant position was then analyzed as follows: the number of implants was calculated that could be placed in sufficient quantity of bone. Additional surgical procedures (guided bone regeneration, sinus floor elevation) that would be necessary due the reduced bone quality and quantity were identified. The indication of template-guided, flapless surgery or an immediate loaded protocol was evaluated. RESULTS: Model (a) - bar overdentures: for 28 patients (70%), all four implants could be placed in sufficient bone (total 112 implants). Thus, a full, flapless procedure could be suggested. For six patients (15%), sufficient bone was not available for any of their planned implants. The remaining six patients had exhibited a combination of sufficient or insufficient bone. Model (b) - simple fixed prosthesis: for 12 patients (30%), all six implants could be placed in sufficient bone (total 72 implants). Thus, a full, flapless procedure could be suggested. For seven patients (17%), sufficient bone was not available for any of their planned implants. The remaining 21 patients had exhibited a combination of sufficient or insufficient bone. DISCUSSION: In the maxilla, advanced atrophy is often observed, and implant placement becomes difficult or impossible. Thus, flapless surgery or an immediate loading protocol can be performed just in a selected number of patients. Nevertheless, the use of a computer program for prosthetically driven implant planning is highly efficient and safe. The three-dimensional view of the maxilla allows the determination of the best implant position, the optimization of the implant axis, and the definition of the best surgical and prosthetic solution for the patient. Thus, a protocol that combines a computer-guided technique with conventional surgical procedures becomes a promising option, which needs to be further evaluated and improved.