957 resultados para Computer mathematics
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
In real optimization problems, usually the analytical expression of the objective function is not known, nor its derivatives, or they are complex. In these cases it becomes essential to use optimization methods where the calculation of the derivatives, or the verification of their existence, is not necessary: the Direct Search Methods or Derivative-free Methods are one solution. When the problem has constraints, penalty functions are often used. Unfortunately the choice of the penalty parameters is, frequently, very difficult, because most strategies for choosing it are heuristics strategies. As an alternative to penalty function appeared the filter methods. A filter algorithm introduces a function that aggregates the constrained violations and constructs a biobjective problem. In this problem the step is accepted if it either reduces the objective function or the constrained violation. This implies that the filter methods are less parameter dependent than a penalty function. In this work, we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of the simplex method and filter methods. This method does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. The basic idea of simplex filter algorithm is to construct an initial simplex and use the simplex to drive the search. We illustrate the behavior of our algorithm through some examples. The proposed methods were implemented in Java.
Resumo:
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
Resumo:
In evaluating an interconnection network, it is indispensable to estimate the size of the maximal connected components of the underlying graph when the network begins to lose processors. Hypercube is one of the most popular interconnection networks. This article addresses the maximal connected components of an n -dimensional cube with faulty processors. We first prove that an n -cube with a set F of at most 2n - 3 failing processors has a component of size greater than or equal to2(n) - \F\ - 1. We then prove that an n -cube with a set F of at most 3n - 6 missing processors has a component of size greater than or equal to2(n) - \F\ - 2.
Resumo:
This paper introduces a new variant of the popular n-dimensional hypercube network Q(n), known as the n-dimensional locally twisted cube LTQ(n), which has the same number of nodes and the same number of connections per node as Q(n). Furthermore. LTQ(n) is similar to Q(n) in the sense that the nodes can be one-to-one labeled with 0-1 binary sequences of length n. so that the labels of any two adjacent nodes differ in at most two successive bits. One advantage of LTQ(n) is that the diameter is only about half of the diameter of Q(n) We develop a simple routing algorithm for LTQ(n), which creates a shortest path from the source to the destination in O(n) time. We find that LTQ(n) consists of two disjoint copies of Q(n) by adding a matching between their nodes. On this basis. we show that LTQ(n) has a connectivity of n.
Resumo:
evaluating the fault tolerance of an interconnection network, it is essential to estimate the size of a maximal connected component of the network at the presence of faulty processors. Hypercube is one of the most popular interconnection networks. In this paper, we prove that for ngreater than or equal to6, an n-dimensional cube with a set F of at most (4n-10) failing processors has a component of size greater than or equal to2"-\F-3. This result demonstrates the superiority of hypercube in terms of the fault tolerance.
Resumo:
Hypercube is one of the most popular topologies for connecting processors in multicomputer systems. In this paper we address the maximum order of a connected component in a faulty cube. The results established include several known conclusions as special cases. We conclude that the hypercube structure is resilient as it includes a large connected component in the presence of large number of faulty vertices.
Resumo:
An n-dimensional Mobius cube, 0MQ(n) or 1MQ(n), is a variation of n-dimensional cube Q(n) which possesses many attractive properties such as significantly smaller communication delay and stronger graph-embedding capabilities. In some practical situations, the fault tolerance of a distributed memory multiprocessor system can be measured more precisely by the connectivity of the underlying graph under forbidden fault set models. This article addresses the connectivity of 0MQ(n)/1MQ(n), under two typical forbidden fault set models. We first prove that the connectivity of 0MQ(n)/1MQ(n) is 2n - 2 when the fault set does not contain the neighborhood of any vertex as a subset. We then prove that the connectivity of 0MQ(n)/1MQ(n) is 3n - 5 provided that the neighborhood of any vertex as well as that of any edge cannot fail simultaneously These results demonstrate that 0MQ(n)/1MQ(n) has the same connectivity as Q(n) under either of the previous assumptions.
Resumo:
In order to make a full evaluation of an interconnection network, it is essential to estimate the minimum size of a largest connected component of this network provided the faulty vertices in the network may break its connectedness. Star graphs are recognized as promising candidates for interconnection networks. This article addresses the size of a largest connected component of a faulty star graph. We prove that, in an n-star graph (n >= 3) with up to 2n-4 faulty vertices, all fault-free vertices but at most two form a connected component. Moreover, all fault-free vertices but exactly two form a connected component if and only if the set of all faulty vertices is equal to the neighbourhood of a pair of fault-free adjacent vertices. These results show that star graphs exhibit excellent fault-tolerant abilities in the sense that there exists a large functional network in a faulty star graph.
Resumo:
We propose a method for accelerating iterative algorithms for solving symmetric linear complementarity problems. The method consists in performing a one-dimensional optimization in the direction generated by a splitting method even for non-descent directions. We give strong convergence proofs and present numerical experiments that justify using this acceleration.