980 resultados para Computational techniques
Resumo:
The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.
Resumo:
In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.
Resumo:
Protein kinases exhibit various degrees of substrate specificity. The large number of different protein kinases in the eukaryotic proteomes makes it impractical to determine the specificity of each enzyme experimentally. To test if it were possible to discriminate potential substrates from non-substrates by simple computational techniques, we analysed the binding enthalpies of modelled enzyme-substrate complexes and attempted to correlate it with experimental enzyme kinetics measurements. The crystal structures of phosphorylase kinase and cAMP-dependent protein kinase were used to generate models of the enzyme with a series of known peptide substrates and non-substrates, and the approximate enthalpy of binding assessed following energy minimization. We show that the computed enthalpies do not correlate closely with kinetic measurements, but the method can distinguish good substrates from weak substrates and non-substrates. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.
Resumo:
Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.
Resumo:
L'obiettivo principale della politica di sicurezza alimentare è quello di garantire la salute dei consumatori attraverso regole e protocolli di sicurezza specifici. Al fine di rispondere ai requisiti di sicurezza alimentare e standardizzazione della qualità, nel 2002 il Parlamento Europeo e il Consiglio dell'UE (Regolamento (CE) 178/2002 (CE, 2002)), hanno cercato di uniformare concetti, principi e procedure in modo da fornire una base comune in materia di disciplina degli alimenti e mangimi provenienti da Stati membri a livello comunitario. La formalizzazione di regole e protocolli di standardizzazione dovrebbe però passare attraverso una più dettagliata e accurata comprensione ed armonizzazione delle proprietà globali (macroscopiche), pseudo-locali (mesoscopiche), ed eventualmente, locali (microscopiche) dei prodotti alimentari. L'obiettivo principale di questa tesi di dottorato è di illustrare come le tecniche computazionali possano rappresentare un valido supporto per l'analisi e ciò tramite (i) l’applicazione di protocolli e (ii) miglioramento delle tecniche ampiamente applicate. Una dimostrazione diretta delle potenzialità già offerte dagli approcci computazionali viene offerta nel primo lavoro in cui un virtual screening basato su docking è stato applicato al fine di valutare la preliminare xeno-androgenicità di alcuni contaminanti alimentari. Il secondo e terzo lavoro riguardano lo sviluppo e la convalida di nuovi descrittori chimico-fisici in un contesto 3D-QSAR. Denominata HyPhar (Hydrophobic Pharmacophore), la nuova metodologia così messa a punto è stata usata per esplorare il tema della selettività tra bersagli molecolari strutturalmente correlati e ha così dimostrato di possedere i necessari requisiti di applicabilità e adattabilità in un contesto alimentare. Nel complesso, i risultati ci permettono di essere fiduciosi nel potenziale impatto che le tecniche in silico potranno avere nella identificazione e chiarificazione di eventi molecolari implicati negli aspetti tossicologici e nutrizionali degli alimenti.
Resumo:
Traditional Chinese Medicine (TCM) has been actively researched through various approaches, including computational techniques. A review on basic elements of TCM is provided to illuminate various challenges and progresses in its study using computational methods. Information on various TCM formulations, in particular resources on databases of TCM formulations and their integration to Western medicine, are analyzed in several facets, such as TCM classifications, types of databases, and mining tools. Aspects of computational TCM diagnosis, namely inspection, auscultation, pulse analysis as well as TCM expert systems are reviewed in term of their benefits and drawbacks. Various approaches on exploring relationships among TCM components and finding genes/proteins relating to TCM symptom complex are also studied. This survey provides a summary on the advance of computational approaches for TCM and will be useful for future knowledge discovery in this area. © 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^
Resumo:
The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.
Resumo:
Asymmetric organocatalysed reactions are one of the most fascinating synthetic strategies which one can adopt in order to induct a desired chirality into a reaction product. From all the possible practical applications of small organic molecules in catalytic reaction, amine–based catalysis has attracted a lot of attention during the past two decades. The high interest in asymmetric aminocatalytic pathways is to account to the huge variety of carbonyl compounds that can be functionalized by many different reactions of their corresponding chiral–enamine or –iminium ion as activated nucleophile and electrophile, respectively. Starting from the employment of L–Proline, many useful substrates have been proposed in order to further enhance the catalytic performances of these reaction in terms of enantiomeric excess values, yield, conversion of the substrate and turnover number. In particular, in the last decade the use of chiral and quasi–enantiomeric primary amine species has got a lot of attention in the field. Contemporaneously, many studies have been carried out in order to highlight the mechanism through which these kinds of substrates induct chirality into the desired products. In this scenario, computational chemistry has played a crucial role due to the possibility of simulating and studying any kind of reaction and the transition state structures involved. In the present work the transition state geometries of primary amine–catalysed Michael addition reaction of cyclohexanone to trans–β–nitrostyrene with different organic acid cocatalysts has been studied through different computational techniques such as density functional theory based quantum mechanics calculation and force–field directed molecular simulations.
Resumo:
Polymerases and nucleases are enzymes processing DNA and RNA. They are involved in crucial processes for cell life by performing the extension and the cleavage of nucleic acid chains during genome replication and maintenance. Additionally, both enzymes are often associated to several diseases, including cancer. In order to catalyze the reaction, most of them operate via the two-metal-ion mechanism. For this, despite showing relevant differences in structure, function and catalytic properties, they share common catalytic elements, which comprise the two catalytic ions and their first-shell acidic residues. Notably, recent studies of different metalloenzymes revealed the recurrent presence of additional elements surrounding the active site, thus suggesting an extended two-metal-ion-centered architecture. However, whether these elements have a catalytic function and what is their role is still unclear. In this work, using state-of-the-art computational techniques, second- and third-shell elements are showed to act in metallonucleases favoring the substrate positioning and leaving group release. In particular, in hExo1 a transient third metal ion is recruited and positioned near the two-metal-ion site by a structurally conserved acidic residue to assist the leaving group departure. Similarly, in hFEN1 second- and third-shell Arg/Lys residues operate the phosphate steering mechanism through (i) substrate recruitment, (ii) precise cleavage localization, and (iii) leaving group release. Importantly, structural comparisons of hExo1, hFEN1 and other metallonucleases suggest that similar catalytic mechanisms may be shared by other enzymes. Overall, the results obtained provide an extended vision on parallel strategies adopted by metalloenzymes, which employ divalent metal ion or positively charged residues to ensure efficient and specific catalysis. Furthermore, these outcomes may have implications for de novo enzyme engineering and/or drug design to modulate nucleic acid processing.
Resumo:
Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.