956 resultados para Computational approach
Resumo:
This PhD project aims to study paraphrasing, initially understood as the different ways in which the same content is expressed linguistically. We will go into that concept in depth trying to define and delimit its scope more accurately. In that sense, we also aim to discover which kind of structures and phenomena it covers. Although there exist some paraphrasing typologies, the great majority of them only apply to English, and focus on lexical and syntactic transformations. Our intention is to go further into this subject and propose a paraphrasing typology for Spanish and Catalan combining lexical, syntactic, semantic and pragmatic knowledge. We apply a bottom-up methodology trying to collect evidence of this phenomenon from the data. For this purpose, we are initially using the Spanish Wikipedia as our corpus. The internal structure of this encyclopedia makes it a good resource for extracting paraphrasing examples for our investigation. This empirical approach will be complemented with the use of linguistic knowledge, and by comparing and contrasting our results to previously proposed paraphrasing typologies in order to enlarge the possible paraphrasing forms found in our corpus. The fact that the same content can be expressed in many different ways presents a major challenge for Natural Language Processing (NLP) applications. Thus, research on paraphrasing has recently been attracting increasing attention in the fields of NLP and Computational Linguistics. The results obtained in this investigation would be of great interest in many of these applications.
Resumo:
The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T 1/2, is estimated for different compounds.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The study investigates the role of credit risk in a continuous time stochastic asset allocation model, since the traditional dynamic framework does not provide credit risk flexibility. The general model of the study extends the traditional dynamic efficiency framework by explicitly deriving the optimal value function for the infinite horizon stochastic control problem via a weighted volatility measure of market and credit risk. The model's optimal strategy was then compared to that obtained from a benchmark Markowitz-type dynamic optimization framework to determine which specification adequately reflects the optimal terminal investment returns and strategy under credit and market risks. The paper shows that an investor's optimal terminal return is lower than typically indicated under the traditional mean-variance framework during periods of elevated credit risk. Hence I conclude that, while the traditional dynamic mean-variance approach may indicate the ideal, in the presence of credit-risk it does not accurately reflect the observed optimal returns, terminal wealth and portfolio selection strategies.
Resumo:
The cytochromes P450 comprise a superfamily of heme-containing mono-oxygenases. These enzymes metabolize numerous xenobiotics, but also play a role in metabolism of endogenous compounds. The P450 1A1 enzyme generally metabolizes polycyclic aromatic hydrocarbons, and its expression can be induced by aryl hydrocarbon receptor (AhR) activation. CYP1A1 is an exception to the generality that the majority of CYPs demonstrate highest expression in liver; CYP1Al is present in numerous extrahepatic tissues, including brain. This P450 has been observed in two forms, wildtype (WT) and brain variant (BV), arising from alternatively spliced mRNA transcripts. The CYP1A1 BV mRNA presented an exon deletion and was detected in human brain but not liver tissue of the same individuals. ^ Quantitative PCR analyses were performed to determine CYP1A1 WT and BV transcript expression levels in normal, bipolar disorder or schizophrenic groups. In our samples, we show that CYP1A1 BV mRNA, when present, is found alongside the full-length form. Furthermore, we demonstrate a significant decrease in expression of CYP1A1 in patients with bipolar disorder or schizophrenia. The expression level was not influenced by post-mortem interval, tissue pH, age, tobacco use, or lifetime antipsychotic medication load. ^ There is no indication of increased brain CYP1A1 expression in normal smokers versus non-smokers in these samples. We observed slightly increased CYP1A1 expression only in bipolar and schizophrenic smokers versus non-smokers. This may be indicative of complex interactions between neuronal chemical environments and AhR-mediated CYP1A1 induction in brain. ^ Structural homology modeling demonstrated that P450 1A1 BV has several alterations to positions/orientations of substrate recognition site residues compared to the WT isoform. Automated substrate docking was employed to investigate the potential binding of neurological signaling molecules and neurotropic drugs, as well as to differentiate specificities of the two P450 1A1 isoforms. We consistently observed that the BV isoform produced energetically favorable substrate dockings in orientations not observed for the same substrate in the WT isoform. These results demonstrated that structural differences, namely an expanded substrate access channel and active site, confer greater capacity for unique compound docking positions suggesting a metabolic profile distinct from the wildtype form for these test compounds. ^
Resumo:
This paper presents an algorithm for identifying noun-phrase antecedents of pronouns and adjectival anaphors in Spanish dialogues. We believe that anaphora resolution requires numerous sources of information in order to find the correct antecedent of the anaphor. These sources can be of different kinds, e.g., linguistic information, discourse/dialogue structure information, or topic information. For this reason, our algorithm uses various different kinds of information (hybrid information). The algorithm is based on linguistic constraints and preferences and uses an anaphoric accessibility space within which the algorithm finds the noun phrase. We present some experiments related to this algorithm and this space using a corpus of 204 dialogues. The algorithm is implemented in Prolog. According to this study, 95.9% of antecedents were located in the proposed space, a precision of 81.3% was obtained for pronominal anaphora resolution, and 81.5% for adjectival anaphora.
Resumo:
This paper presents a novel intonation modelling approach and demonstrates its applicability using the Standard Yorùbá language. Our approach is motivated by the theory that abstract and realised forms of intonation and other dimensions of prosody should be modelled within a modular and unified framework. In our model, this framework is implemented using the Relational Tree (R-Tree) technique. The R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. Our R-Tree for an utterance is generated in two steps. First, the abstract structure of the waveform, called the Skeletal Tree (S-Tree), is generated using tone phonological rules for the target language. Second, the numerical values of the perceptually significant peaks and valleys on the S-Tree are computed using a fuzzy logic based model. The resulting points are then joined by applying interpolation techniques. The actual intonation contour is synthesised by Pitch Synchronous Overlap Technique (PSOLA) using the Praat software. We performed both quantitative and qualitative evaluations of our model. The preliminary results suggest that, although the model does not predict the numerical speech data as accurately as contemporary data-driven approaches, it produces synthetic speech with comparable intelligibility and naturalness. Furthermore, our model is easy to implement, interpret and adapt to other tone languages.
Resumo:
Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.
Resumo:
Social media influence analysis, sometimes also called authority detection, aims to rank users based on their influence scores in social media. Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users’ influence scores. They rarely consider a person’s expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally ”Sina microblogging”). We found that there is a strong correlation between expertise levels and social media influence scores. Our analysis gave a good explanation of the phenomenon of “top across-domain influencers”. In addition, different expertise levels showed influence variation patterns: e.g., (1) high-expertise celebrities have stronger influence on the “audience” in their expertise domains; (2) expertise seems to be more important than relevance and participation for social media influence; (3) the audiences of top expertise celebrities are more likely to forward tweets on topics outside the expertise domains from high-expertise celebrities.
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
In the context of discrete districting problems with geographical constraints, we demonstrate that determining an (ex post) unbiased districting, which requires that the number of representatives of a party should be proportional to its share of votes, turns out to be a computationally intractable (NP-complete) problem. This raises doubts as to whether an independent jury will be able to come up with a “fair” redistricting plan in case of a large population, that is, there is no guarantee for finding an unbiased districting (even if such exists). We also show that, in the absence of geographical constraints, an unbiased districting can be implemented by a simple alternating-move game among the two parties.
Resumo:
This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.
Resumo:
Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.