683 resultados para Computational Mathematics
Resumo:
Mode of access: Internet.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
A representation of the conformal mapping g of the interior or exterior of the unit circle onto a simply-connected domain Ω as a boundary integral in terms ofƒ|∂Ω is obtained, whereƒ :=g -l. A product integration scheme for the approximation of the boundary integral is described and analysed. An ill-conditioning problem related to the domain geometry is discussed. Numerical examples confirm the conclusions of this discussion and support the analysis of the quadrature scheme.
Resumo:
We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.
Resumo:
In this work, we prove a weak Noether-type Theorem for a class of variational problems that admit broken extremals. We use this result to prove discrete Noether-type conservation laws for a conforming finite element discretisation of a model elliptic problem. In addition, we study how well the finite element scheme satisfies the continuous conservation laws arising from the application of Noether’s first theorem (1918). We summarise extensive numerical tests, illustrating the conservation of the discrete Noether law using the p-Laplacian as an example and derive a geometric-based adaptive algorithm where an appropriate Noether quantity is the goal functional.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The flow of Ricci is an analytical tool, and a similar equation for heat geometry, a diffusive process which acts on a variety of metrics Riemannian and thus can be used in mathematics to understand the topology of varieties and also in the study geometric theories. Thus, the Ricci curvature plays an important role in the General Theory of Relativity, characterized as a geometric theory, which is the dominant term in the Einstein field equations. The present work has as main objectives to develop and apply Ricci flow techniques to general relativity, in this case, a three-dimensional asymptotically flat Riemannian metric as a set of initial data for Einstein equations and establish relations and comparisons between them.
Resumo:
When applying computational mathematics in practical applications, even though one may be dealing with a problem that can be solved algorithmically, and even though one has good algorithms to approach the solution, it can happen, and often it is the case, that the problem has to be reformulated and analyzed from a different computational point of view. This is the case of the development of approximate algorithms. This paper frames in the research area of approximate algebraic geometry and commutative algebra and, more precisely, on the problem of the approximate parametrization.
Resumo:
Cox's theorem states that, under certain assumptions, any measure of belief is isomorphic to a probability measure. This theorem, although intended as a justification of the subjectivist interpretation of probability theory, is sometimes presented as an argument for more controversial theses. Of particular interest is the thesis that the only coherent means of representing uncertainty is via the probability calculus. In this paper I examine the logical assumptions of Cox's theorem and I show how these impinge on the philosophical conclusions thought to be supported by the theorem. I show that the more controversial thesis is not supported by Cox's theorem. (C) 2003 Elsevier Inc. All rights reserved.