981 resultados para Composites resin
Resumo:
Objectives: The aim of this research was to evaluate the degree of monomer conversion of different resin cement shades when photocured under different feldspathic ceramic shades. The photocuring time was also evaluated as well as the translucency of each ceramic shade. Methods: Three VITA VM7 ceramic shades (Base Dentin 0M1, Base Dentin 2M2 and Base Dentin 5M3) were used to determine the translucency percentage. A spectrophotometer MiniScan was used to measure the opacity percentage of each specimen (2-mm-thick) and then the translucency was calculated. To measure the degree of conversion (DC), the resin cement (Variolink II; A3 Yellow and transparent) specimens (thickness: 100 μm) were photocured under a ceramic block (2-mm-thick) for 20 or 40 s. Specimens photocured without the ceramic block were used as control. Sixteen groups (n = 3) were evaluated. Micro-ATR/FTIR spectrometry was used to evaluate the extent of polymerization of all specimens after 24 h. The %DC was calculated of experimentally polymerized versus maximally polymerized composite. Results: The translucency percentages of 0M1, 2M2 and 5M3 ceramics were 12.41 (1.02)%, 5.75 (1.91)% and 1.07 (0.03)%, respectively. The %DC of both resin cement shades cured under ceramic 5M3 was significantly lower than the other groups (p < 0.05). The %DC of 0M1 groups exhibited no significant difference from 2M2 groups (p > 0.05), with the exception of the transparent cement photocured for 40 s. Conclusion: Photocuring under 2 mm ceramic showed that the increase in chroma saturation significantly decreased Variolink II resin cement %DC (100-μm-thick). © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A odontologia moderna utiliza métodos e técnicas ultraconservadores no intuito de corrigir os diversos tipos de alterações cromáticas observadas clinicamente. Os meios empregados baseiam-se na utilização de substâncias químicas à base de peróxidos presentes em diversas concentrações. O presente estudo objetivou avaliar a microestrutura de três resinas compostas fotossensíveis submetidas à aplicação de um agente clareador a base de peróxido de hidrogênio a 35% (Whiteness HP Maxx - fabricante: FGM), ativado por uma fonte híbrida de energia luminosa (Aparelho de Laser-Led Whitening Lase, fabricante: DMC). Para isso, foram confeccionados 30 corpos de prova (CDP) 10 para cada grupo, no formato de discos, com 13 mm de diâmetro e 2,0 mm de espessura em uma matriz de teflon e aço inox, fotoativados por um aparelho de luz halógena convencional (Optilux 401 - Demetron/UR) por 40 segundos com densidade de potência média igual a 450 mW/cm2. Os grupos foram dispostos da seguinte forma: Grupo 1 - resina microparticulada (Durafill VS - fabricante: Heraeus Kulzer); Grupo 2 - resina micro-híbrida (Esthet-X - fabricante: Dentsply); e Grupo 3 resina nanoparticulada (Filtek Supreme XT fabricante: 3M ESPE). Todos os materiais restauradores utilizados eram da cor A2. Após serem submetidos à sequência de acabamento e polimento os CDP foram armazenados por sete dias em saliva artificial, limpos em ultra-som, envelhecidos artificialmente de acordo com a norma ASTM G 154. Os CDP dos três grupos foram aleatoriamente divididos em 2 subgrupos (ST sem tratamento e CT com tratamento) e finalmente submetidos aos experimentos. Os CDP dos subgrupos 1-ST, 2- ST e 3-ST foram triturados (SPEX SamplePrep 8000-series, marca: Mixer/Mills) seguido pela verificação dos materiais por meio de um espectrômetro (marca/modelo: Shimadzu EDX 720) para certificação da ausência de elementos pertencentes ao meio de moagem e por fim foram levados a um difrator de raios-X (marca / modelo: Philips -PW 3040 -X'Celerator- 40kV; 30mA; (λ): CuKα; 0,6; 0,2mm; 0,05 (2θ); 2s; 10-90 (2θ). Em seguida os CDP dos subgrupos 1-CT, 2- CT e 3-CT foram tratados com o peróxido de hidrogênio de acordo com o protocolo do fabricante para a fonte híbrida luminosa de energia selecionada, totalizando 9 aplicações de 10 minutos, onde eram respeitados os tempos de 3 minutos de ativação por 20 segundos de descanso, finalizando 10 minutos em cada aplicação. Mediante a este tratamento, os CDP dos subgrupos CT eram verificados e avaliados pelo mesmo método descrito anteriormente. Após interpretação gráfica, análise comparativa por meio do processamento digital das imagens no programa KS400 3.0 (Carl Zeiss Vision) e análise de concordância por cinco avaliadores calibrados utilizando um escore, pôde-se concluir que houve degradação estrutural e que as estruturas cristalinas das resinas estudadas foram afetadas de forma distinta quando tratadas pelo peróxido de hidrogênio; onde observou-se que: Grupo 1 > Grupo 3 > Grupo 2. Foi sugerido a realização de novos estudos, relacionados à interação do peróxido de hidrogênio às resinas compostas.
Resumo:
Stitched fabrics have been widely studied for potential application in aircraft structures since stitch yarns offer improvements in the out-of-plane mechanical properties and also can save time in the lay up process. The down side of stitch yarns came up in the manufacturing process of fabric in which defects introduced by the needle movement creating fiber-free-zones, fiber breakage and misalignment of fibers. The dry stitched carbon fabric preform has mainly been used in the Resin Transfer Molding (RTM) process which high fiber content is aimed, those defects influence negatively the injection behavior reducing the mechanical properties of final material. The purpose of this research work focused on testing in quasi-static mechanical mode (in-plane tension) of a monocomponent resin CYCOM (R) 890 RTM/carbon fiber anti-symmetric quadriaxial fabric stitched by PE 80Dtex yarn processed by RTM. The evaluation consisted in comparing the scatter of the quasi-static test with the attenuation of ultrasonic maps, which show the path of the resin and possible dry spots considering that interference of yarn in resin flow is detectable in ultrasonic measurement. Microscopic analysis was also considered for further evaluation in case of premature failure. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11
Resumo:
This article discusses the development of a test bench and a methodology for the study of composite resin abrasive wear. To evaluate the operation of the test bench and to compare the proposed methodology with other existing ones, a study was made of the five composites most commonly used by dentists.The one-way ANOVA method and the Tukey test were used to statistically analyze the results by multiple comparisons of the groups of resins tested. Using the proposed methodology, these resins were classified in an increasing order of abrasive wear strength, as follows: Charisma (the lowest abrasive wear strength), Tetric, TPH, Herculite and Z-100 (the highest abrasive wear strength) (P < 0.05). In comparison to other methodologies, the results of the proposed methodology presented the lowest coefficient of variation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives. The null hypothesis was that mechanical testing systems used to determine polymerization stress (sigma(pol)) would rank a series of composites similarly. Methods. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. sigma(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. Results. For the experimental composites, sigma(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, sigma(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between sigma(pol) and VS or E. Significance. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.
Resumo:
Micro- and macroscopic characterizations of the viscoelastic fracture of a unidirectional carbon-fibre-reinforced epoxy composite are presented. First, the micro-cracking behavior of the material is studied by the use of scanning electron microscopy; the in situ creep cracking process is observed and the crack propagation is measured. In order to obtain insight into the mechanisms of the observed creep cracking, macroscopic investigations were also carried out. Finite-element method simulations were carried out to calculate the stress distribution and the variation of stresses with time. A theoretical analysis of the orthotropy of viscoelastic fracture behavior of the material is also conducted.
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.