985 resultados para Complex numbers interval
Resumo:
A geometrical construction of the transcomplex numbers was given elsewhere. Here we simplify the transcomplex plane and construct the set of transcomplex numbers from the set of complex numbers. Thus transcomplex numbers and their arithmetic arise as consequences of their construction, not by an axiomatic development. This simplifes transcom- plex arithmetic, compared to the previous treatment, but retains totality so that every arithmetical operation can be applied to any transcomplex number(s) such that the result is a transcomplex number. Our proof establishes the consistency of transcomplex and transreal arithmetic and establishes the expected containment relationships amongst transcomplex, complex, transreal and real numbers. We discuss some of the advantages the transarithmetics have over their partial counterparts.
Resumo:
Paraconsistent logic admits that the contradiction can be true. Let p be the truth values and P be a proposition. In paraconsistent logic the truth values of contradiction is . This equation has no real roots but admits complex roots . This is the result which leads to develop a multivalued logic to complex truth values. The sum of truth values being isomorphic to the vector of the plane, it is natural to relate the function V to the metric of the vector space R2. We will adopt as valuations the norms of vectors. The main objective of this paper is to establish a theory of truth-value evaluation for paraconsistent logics with the goal of using in analyzing ideological, mythical, religious and mystic belief systems.
Resumo:
Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.
Resumo:
This work aims to develop modules that will increase the computational power of the Java-XSC library, and XSC an acronym for "Language Extensions for Scientific Computation . This library is actually an extension of the Java programming language that has standard functions and routines elementary mathematics useful interval. in this study two modules were added to the library, namely, the modulus of complex numbers and complex numbers of module interval which together with the modules original numerical applications that are designed to allow, for example in the engineering field, can be used in devices running Java programs
Resumo:
This work deals with a mathematical fundament for digital signal processing under point view of interval mathematics. Intend treat the open problem of precision and repesention of data in digital systems, with a intertval version of signals representation. Signals processing is a rich and complex area, therefore, this work makes a cutting with focus in systems linear invariant in the time. A vast literature in the area exists, but, some concepts in interval mathematics need to be redefined or to be elaborated for the construction of a solid theory of interval signal processing. We will construct a basic fundaments for signal processing in the interval version, such as basic properties linearity, stability, causality, a version to intervalar of linear systems e its properties. They will be presented interval versions of the convolution and the Z-transform. Will be made analysis of convergences of systems using interval Z-transform , a essentially interval distance, interval complex numbers , application in a interval filter.
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
This work reports on a new software for solving linear systems involving affine-linear dependencies between complex-valued interval parameters. We discuss the implementation of a parametric residual iteration for linear interval systems by advanced communication between the system Mathematica and the library C-XSC supporting rigorous complex interval arithmetic. An example of AC electrical circuit illustrates the use of the presented software.
Resumo:
Complex functions, generally feature some interesting peculiarities, seen as extensions real functions, complementing the study of real analysis. However, the visualization of some complex functions properties requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the study of the functions defined from ℂ to ℂ through traditional techniques and by the use of Domain Colouring. Here, we will show how we can use GeoGebra for the study of complex functions, using several representations and creating tools which complement the tools already provided by the software. Our proposals designed for students of the first year of engineering and science courses can and should be used as an educational tool in collaborative learning environments. The main advantage in its use in individual terms is the promotion of the deductive reasoning (conjecture / proof). In performed the literature review few references were found involving this educational topic and by the use of a single software.
Resumo:
Num universo despovoado de formas geométricas perfeitas, onde proliferam superfícies irregulares, difíceis de representar e de medir, a geometria fractal revelou-se um instrumento poderoso no tratamento de fenómenos naturais, até agora considerados erráticos, imprevisíveis e aleatórios. Contudo, nem tudo na natureza é fractal, o que significa que a geometria euclidiana continua a ser útil e necessária, o que torna estas geometrias complementares. Este trabalho centra-se no estudo da geometria fractal e na sua aplicação a diversas áreas científicas, nomeadamente, à engenharia. São abordadas noções de auto-similaridade (exata, aproximada), formas, dimensão, área, perímetro, volume, números complexos, semelhança de figuras, sucessão e iterações relacionadas com as figuras fractais. Apresentam-se exemplos de aplicação da geometria fractal em diversas áreas do saber, tais como física, biologia, geologia, medicina, arquitetura, pintura, engenharia eletrotécnica, mercados financeiros, entre outras. Conclui-se que os fractais são uma ferramenta importante para a compreensão de fenómenos nas mais diversas áreas da ciência. A importância do estudo desta nova geometria, é avassaladora graças à sua profunda relação com a natureza e ao avançado desenvolvimento tecnológico dos computadores.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. La programació al servei de la matemàtica és un programa informàtic fet amb Excel i Visual Basic. Resol equacions de primer grau, equacions de segon grau, sistemes d'equacions lineals de dues equacions i dues incògnites, sistemes d'equacions lineals compatibles determinats de tres equacions i tres incògnites i troba zeros de funcions amb el teorema de Bolzano. En cadascun dels casos, representa les solucions gràficament. Per a això, en el treball s'ha hagut de treballar, en matemàtiques, amb equacions, nombres complexos, la regla de Cramer per a la resolució de sistemes, i buscar la manera de programar un mètode iteratiu pel teorema de Bolzano. En la part gràfica, s'ha resolt com fer taules de valors amb dues i tres variables i treballar amb rectes i plans. Per la part informàtica, s'ha emprat un llenguatge nou per l'alumne i, sobretot, ha calgut saber decidir on posar una determinada instrucció, ja que el fet de variar-ne la posició una sola línea ho pot canviar tot. A més d'això, s'han resolt altres problemes de programació i també s'ha realitzat el disseny de pantalles.
Resumo:
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet. Die Situation hat eine gewisse Analogie zur Theorie von elliptischen Kurven, Tori und abelschen Varietäten über den komplexen Zahlen. Um zu entscheiden, ob ein t-Modul in diesem Sinne uniformisierbar ist, wendet man ein Kriterium von Anderson an, das die rigide analytische Trivialität der zugehörigen t-Motive zum Inhalt hat. Wir wenden dieses Kriterium auf eine Familie von zweidimensionalen t-Moduln vom Rang vier an, die von Koeffizienten a,b,c,d abhängen, und gelangen dabei zur äquivalenten Fragestellung nach der Konvergenz von gewissen rekursiv definierten Folgen. Das Konvergenzverhalten dieser Folgen lässt sich mit Hilfe von Newtonpolygonen gut untersuchen. Schließlich erhält man durch dieses Vorgehen einfach formulierte Bedingungen an die Koeffizienten a,b,c,d, die einerseits die Uniformisierbarkeit garantieren oder andererseits diese ausschließen.
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Exercises and solutions in PDF