966 resultados para Complete Nucleotide-sequence
Resumo:
In the last decade, dengue fever (DF) in Brazil has been recognized as an important public health problem, and an increasing number of dengue haemorrhagic fever (DHF) cases have been reported since the introduction of dengue virus type 2 (DEN-2) into the country in 1990. In order to analyze the complete genome sequence of a DEN-2 Brazilian strain (BR64022/98), we designed primers to amplify contiguous segments of approximately 500 base pairs across the entire sequence of the viral genome. Twenty fragments amplified by reverse transcriptase-PCR were cloned, and the complete nucleotide and the deduced amino acid sequences were determined. This constitutes the first complete genetic characterization of a DEN-2 strain from Brazil. All amino acid changes differentiating strains related to the Asian/American-Asian genotype were observed in BR64022/98, indicating the Asiatic origin of the strain.
Resumo:
Mammary tumors of a newly isolated strain of Chinese wild mouse (JYG mouse) harbor exogenous mouse mammary tumor virus (MMTV). The complete nucleotide sequence of exogenous JYG-MMTV was determined on the proviral 5' long terminal repeat (LTR)(partial)-gag-pol-env-3' LTR (partial) fragment cloned into a plasmid vector and the cDNA sequence from JYG-MMTV producing cells. Similarly to the other MMTV species the LTR of JYG-MMTV contains an open reading frame (ORF). The amino acid sequence of the JYG-MMTV ORF resembles that of SW-MMTV (92% identity) and endogenous Mtv-7 (93% identity) especially at the C-terminal region. Thus, a functional similarity in T-cell receptor V beta recognition as a superantigen is implicated among these MMTV species. Analysis of the viral gag nucleotide sequence revealed that this gene is not disrupted by the bacterial insertion sequence IS1 or IS2, which have been reported to be present in the majority of the plasmids containing the gag region. Comparison of amino acid sequences of JYG-MMTV with those of BR6-MMTV showed that over 96% of the amino acids of gag, pol, protease and env products are identical. These results suggest the intact nature of the nucleotide sequence of the near full-length MMTV genome cloned in the plasmid.
Resumo:
The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.
Resumo:
The complete nucleotide sequence of the genomic RNA 1 (8745 nt) and RNA 2 (4986 nt) of Citrus leprosis virus cytoplasmic type (CiLV-C) was determined using cloned cDNA. RNA 1 contains two open reading frames (ORFs), which correspond to 286 and 29 kDa proteins. The 286 kDa protein is a polyprotein putatively involved in virus replication, which contains four conserved domains: methyltransferase, protease, helicase and polymerase. RNA 2 contains four ORFs corresponding to 15, 61, 32 and 24 kDa proteins, respectively. The 32 kDa protein is apparently involved in cell-to-cell movement of the virus, but none of the other putative proteins exhibit any conserved domain. The 5' regions of the two genomic RNAs contain a 'cap' structure and poly(A) tails were identified in the 3'-terminals. Sequence analyses and searches for structural and non-structural protein similarities revealed conserved domains with members of the genera Furovirus, Bromovirus, Tobravirus and Tobamovirus, although phylogenetic analyses strongly suggest that CiLV-C is a member of a distinct, novel virus genus and family, and definitely demonstrate that it does not belong to the family Rhabdoviridae, as previously proposed. Based on these results it was proposed that Citrus leprosis virus be considered as the type member of a new genus of viruses, Cilevirus.
Resumo:
The complete genome sequences of two Brazilian wild-type rabies viruses (RABV), a BR-DR1 isolate from a haematophagous bat (Desmodus rotundus) and a BR-AL1 isolate from a frugivorous bat (Artibeus lituratus), were determined. The genomes of the BR-DR1 and RR-AL1 had 11,923 and 11,922 nt, respectively, and both encoded the five standard genes of rhabdoviruses. The complete nucleotide sequence identity between the BR-DR1 and BR-AL1 isolates was 97%. The BR-DR1 and BR-AL1 isolates had some conserved functional sites revealed by the fixed isolates, whereas both isolates had unique amino acid substitutions in the antigenic region IV of the nucleocapsid gene. Therefore, it is speculated that both isolates were nearly identical in virologic character. According to our phylogenetic analysis based on the complete genomes, both isolates belonged to genotype 1, and to the previously defined ""vampire bat-related RABV lineage"" which consisted of mainly D. rotundus- and A. lituratus- isolates; however, a branch pattern with high bootstrap values suggested that BR-DR1 was more closely related to the 9001FRA isolate, which was collected from a dog bitten by a bat in French Guiana, than to BR-AL1. This result suggests that the vampire bat-related RABV lineage includes Brazilian vampire bat and Brazilian frugivorous bat RABV and is further divided into Brazilian vampire bat and Brazilian frugivorous bat RABV sub-lineages. The phylogenetic analysis based on the complete genomes was valuable in discriminating among very closely related isolates.
Resumo:
There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.
Resumo:
The complete nucleotide sequence of the mitochondrial (mt) DNA molecule of the liverfluke, Fasciola hepatica (phylum Platyhelminthes, class Trematoda, family Fasciolidae), was determined, It comprises 14462 bp, contains 12 protein-encoding, 2 ribosomal and 22 transfer RNA genes, and is the second complete flatworm (and the first trematode) mitochondrial sequence to be described in detail. All of the genes are transcribed from the same strand. Of the genes typically found in mitochondrial genomes of eumetazoans, only atp8 is absent. The nad4L and nad4 genes overlap by 40 nt. Most intergenic sequences are very short. Two larger non-coding regions are present. The longer one (817 nt) is located between trnG and cox3 and consists of 8 identical tandem repeats of 85 nt, rich in G and C, followed by 1 imperfect repeat. The shorter non-coding region (187 nt) exhibits no special features and is separated from the longer region by trnG. The gene arrangement resembles that of some other trematodes including the eastern Asian Schistosoma species (and cyclophyllidean cestode species) but it is strikingly different from that of the African schistosomes, represented by Schistosoma mansoni. The genetic code is as inferred previously for flatworms. Transfer RNA genes range in length from 58 to 70 nt, their products producing characteristic 'clover leaf' structures, except for tRNA(S-VON) and tRNA(S-AGN) lacking the DHU arm.
Resumo:
Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Resumo:
Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD(+) kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems.
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The nifH gene sequence of the nitrogen-fixing bacterium Acetobacter diazotrophicus was determined with the use of the polymerase chain reaction and universal degenerate oligonucleotide primers. The gene shows highest pair-wise similarity to the nifH gene of Azospirillum brasilense. The phylogenetic relationships of the nifH gene sequences were compared with those inferred from 16S rRNA gene sequences. Knowledge of the sequence of the nifH gene contributes to the growing database of nifH gene sequences, and will allow the detection of Acet. diazotrophicus from environmental samples with nifH gene-based primers.
Resumo:
There has been a resurgence in the number of pertussis cases in Brazil and around the world. Here, the genome of a clinical Bordetella pertussis strain (Bz181) that was recently isolated in Brazil is reported. Analysis of the virulence-associated genes defining the pre- and post-vaccination lineages revealed the presence of the prn2-ptxS1A-fim3B-ptxP3 allelic profile in Bz181, which is characteristic of the current pandemic lineage. A putative metallo-β-lactamase gene presenting all of the conserved zinc-binding motifs that characterise the catalytic site was identified, in addition to a multidrug efflux pump of the RND family that could confer resistance to erythromycin, which is the antibiotic of choice for treating pertussis disease.
Resumo:
The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2,E4, E5, E6,E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.