834 resultados para Compensatory Movement


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overarching aim of this programme of work was to evaluate the effectiveness of the existing learning environment within the Australian Institute of Sport (AIS) elite springboard diving programme. Unique to the current research programme, is the application of ideas from an established theory of motor learning, specifically ecological dynamics, to an applied high performance training environment. In this research programme springboard diving is examined as a complex system, where individual, task, and environmental constraints are continually interacting to shape performance. As a consequence, this thesis presents some necessary and unique insights into representative learning design and movement adaptations in a sample of elite athletes. The questions examined in this programme of work relate to how best to structure practice, which is central to developing an effective learning environment in a high performance setting. Specifically, the series of studies reported in the chapters of this doctoral thesis: (i) provide evidence for the importance of designing representative practice tasks in training; (ii) establish that completed and baulked (prematurely terminated) take-offs are not different enough to justify the abortion of a planned dive; and (iii), confirm that elite athletes performing complex skills are able to adapt their movement patterns to achieve consistent performance outcomes from variable dive take-off conditions. Chapters One and Two of the thesis provide an overview of the theoretical ideas framing the programme of work, and include a review of literature pertinent to the research aims and subsequent empirical chapters. Chapter Three examined the representativeness of take-off tasks completed in the two AIS diving training facilities routinely used in springboard diving. Results highlighted differences in the preparatory phase of reverse dive take-offs completed by elite divers during normal training tasks in the dry-land and aquatic training environments. The most noticeable differences in dive take-off between environments began during the hurdle (step, jump, height and flight) where the diver generates the necessary momentum to complete the dive. Consequently, greater step lengths, jump heights and flight times, resulted in greater board depression prior to take-off in the aquatic environment where the dives required greater amounts of rotation. The differences observed between the preparatory phases of reverse dive take-offs completed in the dry-land and aquatic training environments are arguably a consequence of the constraints of the training environment. Specifically, differences in the environmental information available to the athletes, and the need to alter the landing (feet first vs. wrist first landing) from the take-off, resulted in a decoupling of important perception and action information and a decomposition of the dive take-off task. In attempting to only practise high quality dives, many athletes have followed a traditional motor learning approach (Schmidt, 1975) and tried to eliminate take-off variations during training. Chapter Four examined whether observable differences existed between the movement kinematics of elite divers in the preparation phases of baulked (prematurely terminated) and completed take-offs that might justify this approach to training. Qualitative and quantitative analyses of variability within conditions revealed greater consistency and less variability when dives were completed, and greater variability amongst baulked take-offs for all participants. Based on these findings, it is probable that athletes choose to abort a planned take-off when they detect small variations from the movement patterns (e.g., step lengths, jump height, springboard depression) of highly practiced comfortable dives. However, with no major differences in coordination patterns (topology of the angle-angle plots), and the potential for negative performance outcomes in competition, there appears to be no training advantage in baulking on unsatisfactory take-offs during training, except when a threat of injury is perceived by the athlete. Instead, it was considered that enhancing the athletes' movement adaptability would be a more functional motor learning strategy. In Chapter Five, a twelve-week training programme was conducted to determine whether a sample of elite divers were able to adapt their movement patterns and complete dives successfully, regardless of the perceived quality of their preparatory movements on the springboard. The data indeed suggested that elite divers were able to adapt their movements during the preparatory phase of the take-off and complete good quality dives under more varied take-off conditions; displaying greater consistency and stability in the key performance outcome (dive entry). These findings are in line with previous research findings from other sports (e.g., shooting, triple jump and basketball) and demonstrate how functional or compensatory movement variability can afford greater flexibility in task execution. By previously only practising dives with good quality take-offs, it can be argued that divers only developed strong couplings between information and movement under very specific performance circumstances. As a result, this sample was sometimes characterised by poor performance in competition when the athletes experienced a suboptimal take-off. Throughout this training programme, where divers were encouraged to minimise baulking and attempt to complete every dive, they demonstrated that it was possible to strengthen the information and movement coupling in a variety of performance circumstances, widening of the basin of performance solutions and providing alternative couplings to solve a performance problem even when the take-off was not ideal. The results of this programme of research provide theoretical and experimental implications for understanding representative learning design and movement pattern variability in applied sports science research. Theoretically, this PhD programme contributes empirical evidence to demonstrate the importance of representative design in the training environments of high performance sports programmes. Specifically, this thesis advocates for the design of learning environments that effectively capture and enhance functional and flexible movement responses representative of performance contexts. Further, data from this thesis showed that elite athletes performing complex tasks were able to adapt their movements in the preparatory phase and complete good quality dives under more varied take-off conditions. This finding signals some significant practical implications for athletes, coaches and sports scientists. As such, it is recommended that care should be taken by coaches when designing practice tasks since the clear implication is that athletes need to practice adapting movement patterns during ongoing regulation of multi-articular coordination tasks. For example, volleyball servers can adapt to small variations in the ball toss phase, long jumpers can visually regulate gait as they prepare for the take-off, and springboard divers need to continue to practice adapting their take-off from the hurdle step. In summary, the studies of this programme of work have confirmed that the task constraints of training environments in elite sport performance programmes need to provide a faithful simulation of a competitive performance environment in order that performance outcomes may be stabilised with practice. Further, it is apparent that training environments can be enhanced by ensuring the representative design of task constraints, which have high action fidelity with the performance context. Ultimately, this study recommends that the traditional coaching adage 'perfect practice makes perfect", be reconsidered; instead advocating that practice should be, as Bernstein (1967) suggested, "repetition without repetition".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: Lesões como o AVE interferem com a capacidade de recrutar níveis adequados de atividade muscular, podendo levar ao aparecimento de movimentos compensatórios como a excessiva translação anterior do tronco, associada ao gesto de alcance. Objetivos: Descrever a relação entre a atividade dos estabilizadores da omoplata e o movimento compensatório do tronco no gesto de alcance, em 4 indivíduos pós AVE. Pretendeu-se também analisar o papel dos estabilizadores da omoplata na função do membro superior. Métodos: Quatro indivíduos com diagnóstico de AVE, que apresentavam alterações no nível de actividade dos estabilizadores da omoplata contralesional, foram sujeitos a uma avaliação realizada em três momentos, antes (M0), durante (M1) e após (M2) e a um período de intervenção, segundo os princípios do Conceito de Bobath. Recorreu-se à electromiografia de superfície para avaliar a atividade e o timming dos músculos grande dorsal, trapézio superior e trapézio inferior do hemicorpo contralesional e ao software de Avaliação Postural (SAPO) para analisar o deslocamento do tronco no sentido anterior, associados à realização do gesto de alcance. Foram aplicadas as escalas RPS e MESUPES para avaliar as componentes de movimento do gesto de alcance e a função do membro superior, respetivamente. Recorreu-se ao registo fotográfico para análise dos componentes de movimento na posição de sentado e em pé.Resultados: Os dados eletromiográficos registam atividade dos estabilizadores da omoplata unicamente num indivíduo em M2. A análise do deslocamento anterior do tronco revela melhorias em M1 em todos os indivíduos, sendo que em M2 essa evolução positiva não foi observada em três dos participantes. Entre M0 e M2, na escala RPS registam-se melhorias de 7 a 9 pontos no alvo próximo e de 5 a 10 pontos no alvo distante. Na escala MESUPES verificam-se melhorias entre 5 a 18 pontos na sub-escala braço e entre 5 a 8 pontos na sub-escala mão, em M2. A avaliação do registo fotográfico revela modificações nos componentes de movimento dos quatro indivíduos, nomeadamente na integração dos MI na base de suporte, na atividade do tronco inferior e superior e no alinhamento do MS contralesional. Conclusão: A melhoria do nível da atividade dos estabilizadores dinâmicos da omoplata sugere ter influência na diminuição do movimento compensatório do tronco no gesto de alcance e parece ter um papel na melhoria da eficácia distal do MS do mesmo lado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: A prematuridade constitui um fator de risco para a ocorrência de lesões ao nível do sistema nervoso central, sendo que uma idade gestacional inferior a 36 semanas potencia esse mesmo risco, nomeadamente para a paralisia cerebral (PC) do tipo diplegia espástica. A sequência de movimento de sentado para de pé (SPP), sendo uma das aprendizagens motoras que exige um controlo postural (CP) ao nível da tibiotársica, parece ser uma tarefa funcional frequentemente comprometida em crianças prematuras com e sem PC. Objetivo(s): Descrever o comportamento dos músculos da tibiotársica, tibial anterior (TA) e solear (SOL), no que diz respeito ao timing de ativação, magnitude e co-ativação muscular durante a fase I e início da fase II na sequência de movimento de SPP realizada por cinco crianças prematuras com PC do tipo diplegia espástica e cinco crianças prematuras sem diagnóstico de alteração neuromotoras, sendo as primeiras sujeitas a um programa de intervenção baseado nos princípios do conceito de Bobath – Tratamento do Neurodesenvolvimento (TND). Métodos: Foram avaliadas 10 crianças prematuras, cinco com PC e cinco sem diagnóstico de alterações neuromotoras, tendo-se recorrido à eletromiografia de superfície para registar parâmetros musculares, nomeadamente timings, magnitudes e valores de co-ativação dos músculos TA e SOL, associados à fase I e inico da fase II da sequência de movimento de SPP. Procedeu-se ao registo de imagem de modo a facilitar a avaliação dos componentes de movimento associados a esta tarefa. Estes procedimentos foram realizados num único momento, no caso das crianças sem diagnóstico de alterações neuromotoras e em dois momentos, antes e após a aplicação de um programa de intervenção segundo o Conceito de Bobath – TND no caso das crianças com PC. A estas foi ainda aplicado o Teste da Medida das Funções Motoras (TMFM–88) e a Classificação Internacional da Funcionalidade Incapacidade e Saúde – crianças e jovens (CIF-CJ). Resultados: Através da eletromiografia constatou-se que ambos os grupos apresentaram timings de ativação afastados da janela temporal considerada como ajustes posturais antecipatórios (APAs), níveis elevados de co-ativação, em alguns casos com inversão na ordem de recrutamento muscular o que foi possível modificar nas crianças com PC após o período de intervenção. Nestas, verificou-se ainda que, a sequência de movimento de SPP foi realizada com menor número de compensações e com melhor relação entre estruturas proximais e distais compatível com o aumento do score final do TMFM-88 e modificação positiva nos itens de atividade e participação da CIF-CJ. Conclusão: As crianças prematuras com e sem PC apresentaram alterações no CP da tibiotársica e níveis elevados de co-ativação muscular. Após o período de intervenção as crianças com PC apresentaram modificações positivas no timing e co-ativação muscular, com impacto funcional evidenciado no aumento do score final da TMFM-88 e modificações positivas na CIF-CJ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of exercise to promote weight loss could potentially be undermined by its influence on explicit or implicit processes of liking and wanting for food which in turn alter food preference. The present study was designed to examine hedonic and homeostatic mechanisms involved in the acute effects of exercise on food intake. 24 healthy female subjects were recruited to take part in two counterbalanced activity sessions; 50 min of high intensity (70% max heart rate) exercise (Ex) or no exercise (NEx). Subjective appetite sensations, explicit and implicit hedonic processes, food preference and energy intake (EI) were measured immediately before and after each activity session and an ad libitum test meal. Two groups of subjects were identified in which exercise exerted different effects on compensatory EI and food preference. After exercise, compensators (C) increased their EI, rated the food to be more palatable, and demonstrated increased implicit wanting. Compensators also showed a preference for high-fat sweet food compared with non-compensators (NC), independent of the exercise intervention. Exercise-induced changes in the hedonic response to food could be an important consideration in the efficacy of using exercise as a means to lose weight. An enhanced implicit wanting for food after exercise may help to explain why some people overcompensate during acute eating episodes. Some individuals could be resistant to the beneficial effects of exercise due to a predisposition to compensate for exercise-induced energy expenditure as a result of implicit changes in food preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background While compensatory eating following acute aerobic exercise is highly variable, little is known about the underling mechanisms that contribute to alterations in exercise-induced eating behaviour. Methods Overweight and obese women (BMI = 29.6 ± 4.0kg.m2) performed a bout of cycling individually tailored to expend 400kcal (EX), or a time-matched no exercise control condition in a randomised, counter-balanced order. Sixty minutes after the cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and subjective appetite ratings were measured during exercise/time-matched rest, and during the period between the cessation of exercise and food consumption. Results While ad libitum EI did not differ between EX and the control condition (666.0 ± 203.9kcal vs. 664.6 ± 174.4kcal, respectively; ns), there was marked individual variability in compensatory energy intake (EI). The difference in EI between EX and the control condition ranged from -234.3 to +278.5kcal. Carbohydrate oxidation during exercise was positively associated with post-exercise EI, accounting for 37% of the variance in EI (r = 0.57; p = 0.02). Conclusions These data indicate that capacity of acute exercise to create a short-term energy deficit in overweight and obese women is highly variable. Furthermore, exercise-induced CHO oxidation can explain part of the variability in acute exercise-induced compensatory eating. Post-exercise compensatory eating could serve as an adaptive response to facilitate the restoration of carbohydrate balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVO: A utilidade dos movimentos corporais (MC) que ocorrem durante o sono para diagnosticar e predizer as conseqüências, em longo prazo, da asfixia perinatal é contraditório. Este estudo investigou se ratos recém-nascidos (RN) manifestam MC em resposta compensatória à asfixia, e se estas alterações podem ter alguma importância na sua patogênese. MÉTODOS: Oito ratos RN (6-48h de vida) foram submetidos à implantação de pequenos eletrodos para registros da eletromiografia e eletrocardiografia. Os MC e a freqüência cardíaca (FC) foram registrados durante períodos de 30 min: fase controle (F1), fases de asfixia (F2; F3) e fase de recuperação pós-asfixia (F4). A asfixia foi promovida pelo envolvimento completo do animal com uma lâmina de polivinil. RESULTADOS: A FC diminuiu progressivamente durante F2 e F3 até a bradicardia. em F2 houve grande agitação dos animais e aumento dos períodos de vigília. em F3 houve redução significante dos MC de 12,5 ± 0,5 (Md ± SE/2min) para 9,0 ± 0,44 (P<0,05). A freqüência dos MC aumentou em F4 para 15,0 ± 0,49. CONCLUSÃO: Estes dados mostram que ratos RN com asfixia apresentam MC compensatórios durante o sono que podem ajudar no diagnóstico desta afecção e de outros problemas relacionados aos parâmetros do sono.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paralysis-by-analysis phenomenon, i.e., attending to the execution of one's movement impairs performance, has gathered a lot of attention over recent years (see Wulf, 2007, for a review). Explanations of this phenomenon, e.g., the hypotheses of constrained action (Wulf et al., 2001) or of step-by-step execution (Masters, 1992; Beilock et al., 2002), however, do not refer to the level of underlying mechanisms on the level of sensorimotor control. For this purpose, a “nodal-point hypothesis” is presented here with the core assumption that skilled motor behavior is internally based on sensorimotor chains of nodal points, that attending to intermediate nodal points leads to a muscular re-freezing of the motor system at exactly and exclusively these points in time, and that this re-freezing is accompanied by the disruption of compensatory processes, resulting in an overall decrease of motor performance. Two experiments, on lever sequencing and basketball free throws, respectively, are reported that successfully tested these time-referenced predictions, i.e., showing that muscular activity is selectively increased and compensatory variability selectively decreased at movement-related nodal points if these points are in the focus of attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements: We would like to thank Sigrid Kenkel, Susanne Muller, Valentina Varalta, Cristina Fonte, Venecia Alb and Cristina Racasan who have contributed to data collection. Declaration of Interest: AS is Chief Science Officer of NovaVision Inc. NS has no conflict of interest. JZ is a member of the Scientific Advisory Board of NovaVision Inc. This study was supported by a NovaVision Inc. research grant to AS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a design game that we called 'Meaning in Movement'. The purpose was to explore notions of professional dental practice with dental practioners in terms of gestures, actions and movements. The game represents a first step towards involving gestures, actions and movements in a design dialog with practioners for the purpose of designing future interactive systems which are more appropriate to the type of skilful actions and richly structured environments of dentists and dental assistants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array.