987 resultados para Color Images
Resumo:
Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.
Resumo:
Aquesta memoria resumeix el treball de final de carrera d’Enginyeria Superior d’Informàtica. Explicarà les principals raons que han motivat el projecte així com exemples que il·lustren l’aplicació resultant. En aquest cas el software intentarà resoldre la actual necessitat que hi ha de tenir dades de Ground Truth per als algoritmes de segmentació de text per imatges de color complexes. Tots els procesos seran explicats en els diferents capítols partint de la definició del problema, la planificació, els requeriments i el disseny fins a completar la il·lustració dels resultats del programa i les dades de Ground Truth resultants.
Resumo:
Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means that the pixels of a given image can be decomposed into sets, the fractal components of the image, with well-defined scaling exponents [Turiel and Parga, Neural Comput. 12, 763 (2000)]. Here it is shown that hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of behavior. A precise measure of the informational relevance of the fractal components is also given, and it is shown that there are important differences between the intrinsically redundant red-green-blue system and the decorrelated one defined in Ruderman, Cronin, and Chiao [J. Opt. Soc. Am. A 15, 2036 (1998)].
Resumo:
Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.
Resumo:
This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
We analyse the influence of colour information in optical flow methods. Typically, most of these techniques compute their solutions using grayscale intensities due to its simplicity and faster processing, ignoring the colour features. However, the current processing systems have minimized their computational cost and, on the other hand, it is reasonable to assume that a colour image offers more details from the scene which should facilitate finding better flow fields. The aim of this work is to determine if a multi-channel approach supposes a quite enough improvement to justify its use. In order to address this evaluation, we use a multi-channel implementation of a well-known TV-L1 method. Furthermore, we review the state-of-the-art in colour optical flow methods. In the experiments, we study various solutions using grayscale and RGB images from recent evaluation datasets to verify the colour benefits in motion estimation.
Resumo:
In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.
Resumo:
The objective of this paper is to present a system to communicate hidden information among different users by means of images. The tasks that the system is able to carry on can be divided in two different groups of utilities, implemented in java. The first group of utilities are related with the possibility to hide information in color images, using a steganographic function based on the least significant bit (LSB) methods. The second group of utilities allows us to communicate with other users with the aim to send or receive images, where some information have been previously embedded. Thus, this is the most significant characteristic of the implementation, we have built an environment where we join the email capabilities to send and receive text and images as attached files, with the main objective of hiding information.
Resumo:
A set of full-color images of objects is described for use in experiments investigating the effects of in-depth rotation on the identification of three-dimensional objects. The corpus contains up to 11 perspective views of 70 nameable objects. We also provide ratings of the "goodness" of each view, based on Thurstonian scaling of subjects' preferences in a paired-comparison experiment. An exploratory cluster analysis on the scaling solutions indicates that the amount of information available in a given view generally is the major determinant of the goodness of the view. For instance, objects with an elongated front-back axis tend to cluster together, and the front and back views of these objects, which do not reveal the object's major surfaces and features, are evaluated as the worst views.
Resumo:
The offered paper deals with the problems of color images preliminary procession. Among these are: interference control (local ones and noise) and extraction of the object from the background on the stage preceding the process of contours extraction. It was considered for a long time that execution of smoothing in segmentation through the boundary extraction is inadmissible, but the described methods and the obtained results evidence about expedience of using the noise control methods.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
Kuvien laatu on tutkituimpia ja käytetyimpiä aiheita. Tässä työssä tarkastellaan värin laatu ja spektrikuvia. Työssä annetaan yleiskuva olemassa olevista pakattujen ja erillisten kuvien laadunarviointimenetelmistä painottaen näiden menetelmien soveltaminen spektrikuviin. Tässä työssä esitellään spektriväriulkomuotomalli värikuvien laadunarvioinnille. Malli sovelletaan spektrikuvista jäljennettyihin värikuviin. Malli pohjautuu sekä tilastolliseen spektrikuvamalliin, joka muodostaa yhteyden spektrikuvien ja valokuvien parametrien välille, että kuvan yleiseen ulkomuotoon. Värikuvien tilastollisten spektriparametrien ja fyysisten parametrien välinen yhteys on varmennettu tietokone-pohjaisella kuvamallinnuksella. Mallin ominaisuuksien pohjalta on kehitetty koekäyttöön tarkoitettu menetelmä värikuvien laadunarvioinnille. On kehitetty asiantuntija-pohjainen kyselymenetelmä ja sumea päättelyjärjestelmä värikuvien laadunarvioinnille. Tutkimus osoittaa, että spektri-väri –yhteys ja sumea päättelyjärjestelmä soveltuvat tehokkaasti värikuvien laadunarviointiin.
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.
Resumo:
One of the key challenges in face perception lies in determining the contribution of different cues to face identification. In this study, we focus on the role of color cues. Although color appears to be a salient attribute of faces, past research has suggested that it confers little recognition advantage for identifying people. Here we report experimental results suggesting that color cues do play a role in face recognition and their contribution becomes evident when shape cues are degraded. Under such conditions, recognition performance with color images is significantly better than that with grayscale images. Our experimental results also indicate that the contribution of color may lie not so much in providing diagnostic cues to identity as in aiding low-level image-analysis processes such as segmentation.