975 resultados para Cold Effect
Resumo:
It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1–2-day delay, reaching maximumincreased risk of death after 6–7 days and lasting up to 20–28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.
Resumo:
The aim of this study was to determine the short-term environmental changes caused by the simultaneous passage of a high energy event on two sandy beaches with different morphodynamic states and their influence on the richness, abundance and distribution of the benthic macrofauna. Two microtidal exposed sandy beaches with contrasting morphodynamics were simultaneously sampled before, during and after the passage of two cold fronts in Santa Catarina. The reflective beach showed a higher susceptibility to the increase in wave energy produced by the passage of cold fronts and was characterized by rapid and intense erosive processes in addition to a capacity for rapid restoration of the beach profile. As regards the dissipative beach, erosive processes operated more slowly and progressively, and it was characterized further by a reduced capacity for the recovery of its sub-aerial profile. Although the intensity of the environmental changes was distinct as between the morphodynamic extremes, changes in the composition, richness and abundance of macrobenthos induced by cold fronts were not evident for either of the beaches studied. On the other hand, alterations in the distribution pattern of the macrofauna were observed on the two beaches and were related to variations in sea level, position of the swash zone and moisture gradient, suggesting that short-term accommodations in the spatial structure of the macrobenthos occur in response to changes in environmental conditions in accordance with the temporal dynamics characteristic of each morphodynamic state.
Resumo:
Hot-wire anemometers at low operating currents are used as fast response resistance thermometers for the study of heated turbulent flows. Simultaneous measurement of temperature and velocity is generally performed with multi-wire arrays. In order to give good spatial resolution a new layout has been tested which uses an inclined temperature wire positioned parallel to the nearest inclined velocity wire. This leads to an asymmetric wire arrangement relative to the mean flow direction. As expected, a reduction in thermal interference from the velocity wires results when compared with an array containing a temperature wire placed normal to the flow. However, measurement of higher order moments of fluctuating quantities in an axisymmetric jet shows considerable distortion of radial distributions which is traced to alteration of the temperature field sensed by the temperature wire. When inclined velocity sensitive wires contain a temperature component, the latter may be affected by the same phenomenon.
Resumo:
The survival and molting incidence in Triatoma infestans, a vector of Chagas disease, were investigated following sequential shocks at 0ºC in fifth instar nymphs under moderate fasting and full nutritional conditions. The shocks were separated by intervals of 8 h and 24 h at 30ºC. The results indicated that in terms of insect survival, T. infestans is tolerant to a single cold shock at 0ºC even for 12 h, or to sequential cold shocks, regardless of the nutritional state of the specimens. In terms of molting rate, fasting enhanced the tolerance to sequential cold shocks, but did not exceed the tolerance acquired by fully-nourished specimens, except when cold shocks were separated by an 8 h interval at 30ºC. The protective action elicited by fasting was assumed to be additive to that induced by a single mild cold shock or sequential cold shocks. The cold-tolerance response of T. infestans may have favoured its survival in areas of South America with low temperatures, even considering that this species is predominantly associated with human habitats.
Resumo:
Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h) or cold (5 or 0°C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.
Resumo:
The effect of high pressure processing (400 MPa for 10 min) and natural antimicrobials 2 (enterocins and lactate-diacetate) on the behaviour of L. monocytogenes in sliced cooked ham 3 during refrigerated storage (1ºC and 6ºC) was assessed. The efficiency of the treatments after a 4 cold chain break was evaluated. Lactate-diacetate exerted a bacteriostatic effect against L. 5 monocytogenes during the whole storage period (3 months) at 1ºC and 6ºC, even after 6 temperature abuse. The combination of low storage temperature (1ºC), high pressure 7 processing (HPP) and addition of lactate-diacetate reduced the levels of L. monocytogenes 8 during storage by 2.7 log CFU/g. The most effective treatment was the combination of HPP, 9 enterocins and refrigeration at 1ºC, which reduced the population of the pathogen to final counts 10 of 4 MPN/g after 3 months of storage, even after the cold chain break.
Resumo:
Cold pitched roofs, with their form of construction situating insulation on a horizontal ceiling, are intrinsically vulnerable to condensation. This study reports the results derived from using a simulation package (Heat, Air and Moisture modelling tool, or HAM-Tools) to investigate the risk of condensation in cold pitched roofs in housing fitted with a vapour-permeable underlay (VPU) of known characteristics. In order to visualize the effect of the VPUs on moisture transfer, several scenarios were modelled, and compared with the results from a conventional bituminous felt with high resistance (200 MNs/g, Sd = 40 m). The results indicate that ventilation is essential in the roof to reduce condensation. However, a sensitivity analysis proved that reducing the overall tightness of the ceiling and using lower-resistance VPUs would help in controlling condensation formation in the roof. To a large extent, the proposed characteristic performance of the VPU as predicted by manufacturers and some researchers may only be realistic if gaps in the ceiling are sealed completely during construction, which may be practically difficult given current construction practice.
Resumo:
The type and thickness of insulation on the topside horizontal of cold pitched roofs has a significant role in controlling air movement, energy conservation and moisture transfer reduction through the ceiling to the loft (roof void) space. To investigate its importance, a numerical model using a HAM software package on a Matlab platform with a Simulink simulation tool has been developed using insitu measurements of airflows from the dwelling space through the ceiling to the loft of three houses of different configurations and loft space. Considering typical UK roof underlay (i.e. bituminous felt and a vapour permeable underlay), insitu measurements of the 3 houses were tested using a calibrated passive sampling technique. Using the measured airflows, the effect of air movement on three types of roof insulation (i.e. fibreglass, cellulose and foam) was modelled to investigate associated energy losses and moisture transport. The thickness of the insulation materials were varied but the ceiling airtightness and eaves gap size were kept constant. These instances were considered in order to visualize the effects of the changing parameters. In addition, two different roof underlays of varying resistances were considered and compared to access the influence of the underlay, if any, on energy conservation. The comparison of these insulation materials in relation to the other parameters showed that the type of insulation material and thickness, contributes significantly to energy conservation and moisture transfer reduction through the roof and hence of the building as a whole.
Resumo:
The aim of this study was to determine the short-term environmental changes caused by the simultaneous passage of a high energy event on two sandy beaches with different morphodynamic states and their influence on the richness, abundance and distribution of the benthic macrofauna. Two microtidal exposed sandy beaches with contrasting morphodynamics were simultaneously sampled before, during and after the passage of two cold fronts in Santa Catarina. The reflective beach showed a higher susceptibility to the increase in wave energy produced by the passage of cold fronts and was characterized by rapid and intense erosive processes in addition to a capacity for rapid restoration of the beach profile. As regards the dissipative beach, erosive processes operated more slowly and progressively, and it was characterized further by a reduced capacity for the recovery of its sub-aerial profile. Although the intensity of the environmental changes was distinct as between the morphodynamic extremes, changes in the composition, richness and abundance of macrobenthos induced by cold fronts were not evident for either of the beaches studied. On the other hand, alterations in the distribution pattern of the macrofauna were observed on the two beaches and were related to variations in sea level, position of the swash zone and moisture gradient, suggesting that short-term accommodations in the spatial structure of the macrobenthos occur in response to changes in environmental conditions in accordance with the temporal dynamics characteristic of each morphodynamic state.
Resumo:
We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.
Resumo:
Mechanical strength of polyethylene terephthalate (PET) fibres and polymethyl methacrylate (PMMA) matrix composites were studied with particular interest on the effects of oxygen and argon plasma treated fibres. PET. fibres were treated in a radio frequency plasma reactor using argon or oxygen for different treatment times to increase the interface adhesion. Fibre volume fraction was measured through digital image analysis. Elastic moduli resulted between 3 GPa for untreated to 6 GPa for treated composites. Tensile tests on PET fibres showed that plasma treatment caused a decrease in average tensile strength compared to untreated fibres. Fracture analysis confirmed the increase in interfacial adhesion due to plasma treatment. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Vitamin A (vitA) is an essential nutrient that acts as an endocrine regulator of several metabolic pathways, modulating normal growth and health status of animals. Although the importance of vitA for normal haematology and immune response is well documented for higher vertebrates, there is limited information on the physiological effects of vitA on fish. Therefore, we designed a 130-day feeding trial to evaluate the effect of vitA supplementation on growth, haematology, immune function and resistance to experimental infection with Aeromonas hydrophila and cold-induced stress. A group of 320 Nile tilapia fingerlings 7.49 ± 0.19 g weight (mean ± SD) were randomly stocked into 40 250 L-aquaria and fed practical diets containing graded levels of vitA (0, 0.06, 0.12, 0.24, 0.48, 0.96, 1.92, 3.84 mg retinol (ROH) kg−1 diet. Growth, haematology, plasma protein profile and immune response were significantly affected by vitA supplementation; however, no clear protective effect of vitA supplementation on disease and cold stress resistance were observed in this study. Clinical signs of vitA deficiency were: resting and abnormal swimming behaviour, exophthalmia, haemorrhages at the base of fins and on skin, serous fluids in abdominal cavity, neutropenia, reduction in red blood cell count, haematocrit and haemoglobin evolving to high mortality rates in a short period of time. A dietary level of vitA around 1.2 mg ROH kg−1 may be required to prevent gross deficiency signs and promote proper growth and health status of Nile tilapia. VitA does not seem to have a pronounced effect on leucocyte differentiation, but clearly plays an important role on maintaining normal erythropoiesis.
Resumo:
The microstructure, microhardness, texture and corrosion resistance of cold-swaged and cold-wiredrawn copper rods were evaluated. Elongated grains along the deformation direction were observed for both materials and the width of these grains decreased with the increase of reduction in area. Wiredrawn copper rods have higher microhardness than the swaged rods for the same reduction in area. The copper grains in both cold-worked rods presented a preferential orientation in the [1 1 0] crystallographic direction but this trend was more pronounced for swaged rods. The corrosion resistance of wiredrawn copper rods investigated in H(2)SO(4) solutions was lower than that of swaged rods, and for both deformed materials the corrosion resistance decreased with the deformation degree. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background. There is a growing need to improve heart preservation benefit the performance of cardiac operations, decrease morbidity, and more important, increase the donor pool. Therefore, the objective of this study was to evaluate the cardioprotective effects of Krebs-Henseleit buffer (KHB), Bretschneider-HTK (HTK), St. Thomas No. 1 (STH-1), and Celsior (CEL) solutions infused at 10 degrees C and 20 degrees C. Methods. Hearts isolated from male albino Wistar rats and prepared according to Langendorff were randomly divided equally into 8 groups according to the temperature of infusion (10 degrees C or 20 degrees C) and cardioprotective solutions (KHB, HTK, STH-1, and CEL). After stabilization with KHB at 37 degrees C, baseline values were collected (control) for heart rate (HR), left ventricle systolic pressure (LVSP), coronary flow (CF), maximum rate of rise of left ventricular pressure during ventricular contraction (+dP/dt) and maximum rate of fall of left ventricular pressure during left ventricular relaxation (-dP/dt). The hearts were then perfused with cardioprotective solutions for 5 minutes and kept for 2 hours in static ischemia at 20 degrees C. Data evaluation used analysis of variance (ANOVA) in all together randomized 2-way ANOVA and Tukey's test for multiple comparisons. The level of significance chosen was P < .05. Results. We observed that all 4 solutions were able to recover HR, independent of temperature. Interestingly, STH-1 solution at 20 degrees C showed HR above baseline throughout the experiment. An evaluation of the corresponding hemodynamic values (LVSP, +dP/dt, and -dP/dt) indicated that treatment with CEL solution was superior at both temperatures compared with the other solutions, and had better performance at 20 degrees C. When analyzing performance on CF maintenance, we observed that it was temperature dependent. However, when applying both HTK and CEL, at 10 degrees C and 20 degrees C respectively, indicated better protection against development of tissue edema. Multiple comparisons between treatments and hemodynamic variable outcomes showed that using CEL solution resulted in significant improvement compared with the other solutions at both temperatures. Conclusion. The solutions investigated were not able to fully suppress the deleterious effects of ischemia and reperfusion of the heart. However, these results allow us to conclude that temperature and the cardioprotective solution are interdependent as far as myocardial protection. Although CEL solution is the best for in myocardial protection, more studies are needed to understand the interaction between temperature and perfusion solution used. This will lead to development of better and more efficient cardioprotective methods.