999 resultados para Code validation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents measurements of wall heat flux and flow structure in a canonical film cooling configuration with Mach 2.3 core flow in which the coolant is injected parallel to the wall through a two-dimensional louver. Four operating conditions are investigated: no film (i.e. flow over a rearward-facing step), subsonic film, pressure-matched film, and supersonic film. The overall objective is to provide a set of experimental data with well characterized boundary conditions that can be used for code validation. The results are compared to RANS and LES simulations which overpredict heat transfer in the subsonic film cases and underpredict heat transfer in supersonic cases after film breakdown. The thesis also describes a number of improvements that were made to the experimental facility including new Schlieren optics, a better film heater, more data at more locations, and a verification of the heat flux measurement hardware and data reduction methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work is to validate and automate the use of DYNJAWS; a new component module (CM) in the BEAMnrc Monte Carlo (MC) user code. The DYNJAWS CM simulates dynamic wedges and can be used in three modes; dynamic, step-and-shoot and static. The step-and-shoot and dynamic modes require an additional input file defining the positions of the jaw that constitutes the dynamic wedge, at regular intervals during its motion. A method for automating the generation of the input file is presented which will allow for the more efficient use of the DYNJAWS CM. Wedged profiles have been measured and simulated for 6 and 10 MV photons at three field sizes (5 cm x 5 cm , 10 cm x10 cm and 20 cm x 20 cm), four wedge angles (15, 30, 45 and 60 degrees), at dmax and at 10 cm depth. Results of this study show agreement between the measured and the MC profiles to within 3% of absolute dose or 3 mm distance to agreement for all wedge angles at both energies and depths. The gamma analysis suggests that dynamic mode is more accurate than the step-and-shoot mode. The DYNJAWS CM is an important addition to the BEAMnrc code and will enable the MC verification of patient treatments involving dynamic wedges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/ Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment- simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented.