1000 resultados para Co-dissolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microporous, poly(ε-caprolactone) (PCL) matrices were loaded with progesterone by precipitation casting using co-solutions of PCL and progesterone in acetone. Progesterone loadings up to 32% w/w were readily achieved by increasing the drug content of the starting PCL solution. The kinetics of steroid release in PBS at 37°C over 10 days could be described effectively by a diffusional release model although the Korsmeyer-Peppas model indicated the involvement of multiple release phenomena. The diffusion rate constant (D) increased from 8 to 24 μg/mg matrix/day0.5 as the drug loading increased from 3.6 to 12.4% w/w. A total cumulative release of 75%-95% indicates the high efficiency of steroid delivery. Increasing the matrix density from 0.22 to 0.39 g/cm3, by increasing the starting PCL solution concentration, was less effective in changing drug release kinetics. Retention of anti-proliferative activity of released steroid was confirmed using cultures of breast cancer epithelial (MCF-7) cells. Progesterone released from PCL matrices into PBS at 37°C over 14 days retarded the growth of MCF-7 cells by a factor of at least 3.5 compared with progesterone-free controls. These findings recommend further investigation of precipitation-cast PCL matrices for delivery of bioactive molecules such as anti-proliferative agents from implanted, inserted or topical devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recasting process influence upon corrosion behavior of Co-Cr-Mo dental alloy in simulated physiological serum has been investigated using chemical and electrochemical techniques. Recast Co-Cr-Mo alloy by induction (IND) or by blowtorch (FLAME) has exhibited similar dendritic structures. Both IND and FLAME alloys have presented good corrosion resistance in physiological serum. Passivation process provides this corrosion resistance. Codissolution makes this process difficult. Passive films, formed on these alloys, have been analyzed as a dual layer consisting of an inner barrier and an outer porous layer. Passive film protective characteristics are higher in FLAME than in IND alloy. On this last alloy, the passive film is more porous due to a higher Codissolution. ©Carl Hanser Verlag, München.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional time

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of the study was to investigate whether dentine irradiation with a pulsed CO(2) laser (10.6 mu m) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model. Design: The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm(2) (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11j/cm(2) (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer - ICP-OES. Additionally intra-pulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey`s test (alpha = 0.05). Results: In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 degrees C. Conclusion: It can be concluded that under the conditions of this study, CO(2) laser irradiation (10.6 mu m) with 11J/cm(2) (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório de Estágio submetidoà Escola Superior de Teatro e Cinemapara cumprimento dos requisitos necessários à obtenção do grau de Mestre em Artes Performativas- especialização em Teatro-Música

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium UPD on Au was studied by voltammetric and microgravimetric measurements. In the oxide formation/reduction potential region, a mass increasing/decreasing of 32 ng cm-2 was associated to incorporation/elimination of one oxygen per active site. The modifications promoted in the voltammetric and mass profiles by 10-5 M Cd(ClO4)2 are restricted to potentials more negative than 0.4 V. After a 120 s potential delay at 0.05 V, the positive sweep reveals an anodic peak with charge of 40 muC cm-2 and mass decrease of 22 ng cm-2, associated to Cd ads dissolution. Sulphate or chloride was added to the solution without significant influence, due to the low coverage with Cd or anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-solvents can minimize two of the major problems associated with the use of ionic liquids (ILs) as solvents for homogeneous derivatization of cellulose: high viscosity and limited miscibility with non-polar reagents or reaction products. Thus, the effects of 18 solvents and 3 binary solvent mixtures on cellulose solutions in three ILs were systematically studied with respect to the solution phase behavior. The applicable limits of these mixtures were evaluated and general guidelines for the use of co-solvents in cellulose chemistry could be advanced: Appropriate co-solvents should have EN T values (normalized empirical polarity) > 0.3, very low ``acidity`` (alpha < 0.5), and relatively high ""basicity`` (beta >= 0.4). Moreover, novel promising co-solvents and binary co-solvent mixtures were identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung Die vorliegende Arbeit hat zum Ziel, pharmazeutisch-technologische Möglichkeiten der Retardierung bei ausgewählten Antiasthmatika zur pulmonalen Applikation anzuwenden. Dafür sollten Mikropartikel hergestellt und pharmazeutisch sowie biopharmazeutisch charakterisiert werden. Als Modellsubstanzen werden das Glukokortikoid Budesonid und das β2-Sympathomimetikum Salbutamol in Form seiner Base und seines Salzes verwendet. Die Auswahl erfolgt nach physikochemischen (Lipophilie, Molekulargewicht) und therapeutischen (Halbwertszeit der Wirkung, Applikationsfrequenz) Gesichtspunkten. Mikropartikel auf Polymerbasis ermöglichen eine kontrollierte Freigabe der Arzneistoffe über einen vorausbestimmten Zeitraum. Es erfolgt die Auswahl physiologisch unbedenklicher Hilfsstoffe (Polylaktide R 202H/ Poly(laktid-co-glykolide) RG 502H, RG 752-S) mit unterschiedlichen Anteilen an Coglykolid sowie unterschiedlichen Molekulargewichten, die sich prinzipiell zur Verzögerung der Freisetzung eignen und sich bei der parenteralen Applikation bereits bewährt haben. Die Sprühtrocknung wird als geeignetes pharmazeutisch-technologisches Verfahren zur Präparation von Mikropartikeln im Teilchengrößenbereich von 1- 10 Mikrometern beschrieben, welche den Wirkstoff mit möglichst hoher Beladung verkapselt. Die sprühgetrockneten Pulver sollen pharmazeutisch physikochemisch mittels Rasterelektronenmikroskopie (Morphologie), Laserdiffraktometrie (Teilchengrößenverteilung), DSC und Röntgenpulverdiffraktometrie (thermisches Verhalten) und mittels Stickstoff-Tief-Temperatur Adsorptionsverfahren (spezifische Oberfläche) charakterisiert werden. Zusätzlich wird die Wirkstoffbeladung der sprühgetrockneten Polymer-Mikropartikel mittels HPLC ermittelt. Die biopharmazeutische Charakterisierung der sprühgetrockneten Pulver erfolgt über die in-vitro Freigabekinetik und die Stabilität der Mikropartikel. Zusätzlich werden Versuche an Zellkulturen und in-vivo Versuche an Mäusen durchgeführt, um die Effekte der sprühgetrockneten Mikropartikel und des Hilfsstoffs hinsichtlich der Freisetzungsretardierung zu testen. Bei den in-vivo Versuchen werden der Atemwegswiderstand und die Verlängerung der exspiratorischen Phase (penh) als Parameter für einen antiasthmatischen Effekt gewählt. Die Lungenlavage Flüssigkeit wird zusätzlich überprüft. Die Ergebnisse zeigen, dass es mit Hilfe der Sprühtrocknung möglich ist, Polymer-Mikropartikel herzustellen, die aufgrund ihrer Partikelgröße von d50 ≤ 5,8 µm fähig sind, die unteren Abschnitte der Lunge zu erreichen. Die Morphologie der Mikropartikel ist abhängig vom zu versprühenden Produkt. Thermodynamisch und röntgenpulverdiffraktometrisch betrachtet handelt es sich um amorphe Produkte, die aber über lange Zeit in diesem Zustand stabil sind. Die Wiederfindung der eingesetzten Arzneistoffmenge in den sprühgetrockneten Polymer-Mikropartikeln und die Freigabeversuche zur Charakterisierung der Retardierungseigenschaften der verwendeten Polymere ergeben, dass es mit Hilfe der Sprühtrocknung von Budesonid und Salbutamol mit den Polymeren möglich ist, retardierende Mikropartikel herzustellen. Die Wiederfindung von Budesonid und Salbutamol in den sprühgetrockneten Polymer-Mikropartikeln entspricht nahezu der eingesetzten Menge. Bei Salbutamolsulfat ist dies nicht der Fall. In Zellkulturversuchen der murinen Zellinie RAW 264.7 ergaben sich Hinweise darauf, dass bei Konzentrationen von 10-6 M und 10-8 M, die Downregulation der IL-6 Konzentration durch die Sprüheinbettung von 9,1 % Budesonid mit PLGA in stärkerem Ausmaß erfolgte, als bei unverkapseltem Budesonid. Zusätzlich wurden in-vivo Versuche mit intranasaler und intraperitonealer Gabe durchgeführt. Die Budesonid-Polymer Sprüheinbettung wurde mit unverkapseltem Budesonid vergleichen. Nach intraperitonealer Gabe hatte die Sprüheinbettung mit Budesonid die besten Effekte hinsichtlich der Unterdrückung des penh und des Atemwegswiderstands auch bei steigenden Metacholinkonzentrationen. Die Auswertung der Lungenlavage Flüssigkeit zeigt sehr deutlich die Downregulation der IL-6 Konzentration in der Lunge durch die Sprüheinbettung mit Budesonid. Zur Zeit werden Vorbereitungen getroffen, ein Gerät zu testen, das in der Lage ist, ein Mikrospray zu generieren, so dass eine intratracheale Verabreichung möglich wäre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability. In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications. Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals. Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.