946 resultados para Clique irreducible graphs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphs G is clique irreducible if every clique in G of size at least two,has an edge which does not lie in any other clique of G and is clique reducible if it is not clique irreducible. A graph G is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G and clique vertex reducible if it is not clique vertex irreducible. The clique vertex irreducibility and clique irreducibility of graphs which are non-complete extended p-sums (NEPS) of two graphs are studied. We prove that if G(c) has at least two non-trivial components then G is clique vertex reducible and if it has at least three non-trivial components then G is clique reducible. The cographs and the distance hereditary graphs which are clique vertex irreducible and clique irreducible are also recursively characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this note,the (t) properties of five class are studied. We proved that the classes of cographs and clique perfect graphs without isolated vertices satisfy the (2) property and the (3) property, but do not satisfy the (t) property for tis greater than equal to 4. The (t) properties of the planar graphs and the perfect graphss are also studied . we obtain a necessary and suffieient conditions for the trestled graph of index K to satisfy the (2) property

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optimizing compiler internal representation fundamentally affects the clarity, efficiency and feasibility of optimization algorithms employed by the compiler. Static Single Assignment (SSA) as a state-of-the-art program representation has great advantages though still can be improved. This dissertation explores the domain of single assignment beyond SSA, and presents two novel program representations: Future Gated Single Assignment (FGSA) and Recursive Future Predicated Form (RFPF). Both FGSA and RFPF embed control flow and data flow information, enabling efficient traversal program information and thus leading to better and simpler optimizations. We introduce future value concept, the designing base of both FGSA and RFPF, which permits a consumer instruction to be encountered before the producer of its source operand(s) in a control flow setting. We show that FGSA is efficiently computable by using a series T1/T2/TR transformation, yielding an expected linear time algorithm for combining together the construction of the pruned single assignment form and live analysis for both reducible and irreducible graphs. As a result, the approach results in an average reduction of 7.7%, with a maximum of 67% in the number of gating functions compared to the pruned SSA form on the SPEC2000 benchmark suite. We present a solid and near optimal framework to perform inverse transformation from single assignment programs. We demonstrate the importance of unrestricted code motion and present RFPF. We develop algorithms which enable instruction movement in acyclic, as well as cyclic regions, and show the ease to perform optimizations such as Partial Redundancy Elimination on RFPF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques. We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations. Copyright 2012 by the author(s)/owner(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of a randomized version of the subgraph-exclusion algorithm (called Ramsey) for CLIQUE by Boppana and Halldorsson is studied on very large graphs. We compare the performance of this algorithm with the performance of two common heuristic algorithms, the greedy heuristic and a version of simulated annealing. These algorithms are tested on graphs with up to 10,000 vertices on a workstation and graphs as large as 70,000 vertices on a Connection Machine. Our implementations establish the ability to run clique approximation algorithms on very large graphs. We test our implementations on a variety of different graphs. Our conclusions indicate that on randomly generated graphs minor changes to the distribution can cause dramatic changes in the performance of the heuristic algorithms. The Ramsey algorithm, while not as good as the others for the most common distributions, seems more robust and provides a more even overall performance. In general, and especially on deterministically generated graphs, a combination of simulated annealing with either the Ramsey algorithm or the greedy heuristic seems to perform best. This combined algorithm works particularly well on large Keller and Hamming graphs and has a competitive overall performance on the DIMACS benchmark graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cut (A, B) (where B = V - A) in a graph G = (V, E) is called internal if and only if there exists a vertex x in A that is not adjacent to any vertex in B and there exists a vertex y is an element of B such that it is not adjacent to any vertex in A. In this paper, we present a theorem regarding the arrangement of cliques in a chordal graph with respect to its internal cuts. Our main result is that given any internal cut (A, B) in a chordal graph G, there exists a clique with kappa(G) + vertices (where kappa(G) is the vertex connectivity of G) such that it is (approximately) bisected by the cut (A, B). In fact we give a stronger result: For any internal cut (A, B) of a chordal graph, and for each i, 0 <= i <= kappa(G) + 1 such that vertical bar K-i vertical bar = kappa(G) + 1, vertical bar A boolean AND K-i vertical bar = i and vertical bar B boolean AND K-i vertical bar = kappa(G) + 1 - i. An immediate corollary of the above result is that the number of edges in any internal cut (of a chordal graph) should be Omega(k(2)), where kappa(G) = k. Prompted by this observation, we investigate the size of internal cuts in terms of the vertex connectivity of the chordal graphs. As a corollary, we show that in chordal graphs, if the edge connectivity is strictly less than the minimum degree, then the size of the mincut is at least kappa(G)(kappa(G)+1)/2 where kappa(G) denotes the vertex connectivity. In contrast, in a general graph the size of the mincut can be equal to kappa(G). This result is tight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) <= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)greater-or-equal, slantedχ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)less-than-or-equals, slant2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new class of clique separators, called base sets, for chordal graphs. Base sets of a chordal graph closely reflect its structure. We show that the notion of base sets leads to structural characterizations of planar k-trees and planar chordal graphs. Using these characterizations, we develop linear time algorithms for recognizing planar k-trees and planar chordal graphs. These algorithms are extensions of the Lexicographic_Breadth_First_Search algorithm for recognizing chordal graphs and are much simpler than the general planarity checking algorithm. Further, we use the notion of base sets to prove the equivalence of hamiltonian 2-trees and maximal outerplanar graphs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rainbow colouring of a connected graph is a colouring of the edges of the graph, such that every pair of vertices is connected by at least one path in which no two edges are coloured the same. Such a colouring using minimum possible number of colours is called an optimal rainbow colouring, and the minimum number of colours required is called the rainbow connection number of the graph. A Chordal Graph is a graph in which every cycle of length more than 3 has a chord. A Split Graph is a chordal graph whose vertices can be partitioned into a clique and an independent set. A threshold graph is a split graph in which the neighbourhoods of the independent set vertices form a linear order under set inclusion. In this article, we show the following: 1. The problem of deciding whether a graph can be rainbow coloured using 3 colours remains NP-complete even when restricted to the class of split graphs. However, any split graph can be rainbow coloured in linear time using at most one more colour than the optimum. 2. For every integer k ≥ 3, the problem of deciding whether a graph can be rainbow coloured using k colours remains NP-complete even when restricted to the class of chordal graphs. 3. For every positive integer k, threshold graphs with rainbow connection number k can be characterised based on their degree sequence alone. Further, we can optimally rainbow colour a threshold graph in linear time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes new improvements for BB-MaxClique (San Segundo et al. in Comput Oper Resour 38(2):571–581, 2011 ), a leading maximum clique algorithm which uses bit strings to efficiently compute basic operations during search by bit masking. Improvements include a recently described recoloring strategy in Tomita et al. (Proceedings of the 4th International Workshop on Algorithms and Computation. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, pp 191–203, 2010 ), which is now integrated in the bit string framework, as well as different optimization strategies for fast bit scanning. Reported results over DIMACS and random graphs show that the new variants improve over previous BB-MaxClique for a vast majority of cases. It is also established that recoloring is mainly useful for graphs with high densities.