988 resultados para Clean Energy Package
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells and cogeneration and tri generation systems. In order to propel this technological development discussed where the hydrogen plays a key role as energy storage and renewable energy, the National Centre of Hydrogen and Fuel Cell Technology Experimentation in Spain equipped with installations that enable scientific and technological design, develop, verify, certify, approve, test, measure and, more importantly, the facility ensures continuous operation for 24 hours a day, 365 days year. At the same time, the system is scalable so as to allow continuous adaptation of new technologies are developed and incorporated into the assembly to verify integration at the same time it checks the validity of their development. The transformation sector can be said to be the heart of the system, because without neglecting the other sectors, this should prove the validity of hydrogen as a carrier - energy storage are important efforts that have to do to demonstrate the suitability of fuel cells or internal combustion systems to realize the energy stored in hydrogen at prices competitive with conventional systems. The multiple roles to meet the fuel cells under different conditions of operation require to cover their operating conditions, many different sizes and applications. The fourth area focuses on integration is an essential complement within the installation. We must integrate not only the electricity produced, but also hydrogen is used and the heat generated in the process of using hydrogen energy. The energy management in its three forms: hydrogen chemical, electrical and thermal integration requires complicated and require a logic and artificial intelligence extremes to ensure maximum energy efficiency at the same time optimum utilization is achieved. Verification of the development and approval in the entire production system and, ultimately, as a demonstrator set to facilitate the simultaneous evolution of production technology, storage and distribution of hydrogen fuel cells has been assessed.
Resumo:
Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.
Resumo:
On 22 January 2014, the European Commission is expected to publish the proposals for the 2030 Framework for Climate and Energy Policies, which will be discussed and possibly – or maybe, partly – agreed during the 20-21 March 2014 European Council. This is the first comprehensive review of the 2007-09 Climate and Energy Package, which resulted in the so-called ‘20-20-20’ targets by 2020. The principal intention is to define the EU’s climate change and energy policy framework for the next decade and beyond to give investors an adequate amount of predictability if not certainty. This Commentary argues, however, that the ‘2030 Framework’ is not just about predictability; it is also about making the proper adjustments based on the lessons learned and also in response to new issues that have emerged in the interim. The authors ask what the main lessons are and how they should influence the 2030 Framework. Or put differently, what are the conditions that the “2030 Framework” will need to meet in order to offer a viable package for discussion?
Resumo:
This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.
Resumo:
Iowans today operate in a world of change. From evolving economic conditions to environmental issues and demographic trends in our communities, we live and work in an atmosphere that constantly challenges us to think anew about our future. In Iowa, we are doing more than embracing these changes – we are seeking them. As a state focused on being the hub of investment and innovation for a new clean energy economy, our long term success depends on us staying ahead of these transformative waves. We do this all with attention to ensuring that we are investing in the right work to guarantee Iowa remains relevant, vibrant and connected to our vision for the next quarter of a century, not just the next quarter.
Resumo:
The Office of Energy Independence (Office) is the state agency responsible for setting the strategic direction, directing policy, conducting energy related outreach and administering programs that optimize energy production and efficiency to secure Iowa’s clean energy future. The Office performed its duties as set forth in Iowa Code 469.3(2), managed the Iowa Power Fund and federal U.S. Department of Energy (DOE) grants funded through the American Recovery and Reinvestment Act (ARRA), as well as an annual federal appropriation that supports the Office’s operational costs. As part of the national network for energy security, the Office is responsible for ensuring state emer- gency preparedness and quick recovery and restoration from any energy supply disruptions.
Resumo:
Energy efficiency and saving energy are the main question marks when thinking of reducing carbon dioxide emissions or cutting costs. The objective of thesis is to evaluate policy instruments concerning end-use energy efficiency of heavy industry in European Union. These policy instruments may be divided in various ways, but in this thesis the division is to administrative, financial, informative and voluntary instruments. Administrative instruments introduced in this thesis are Directive on Integrated Pollution Prevention and Control, Directive on Energy End-use Efficiency and Energy Services, and Climate and Energy Package. Financial means include energy and emission taxation, EU Emission Trading Scheme and diverse support systems. Informative instruments consist of horizontal BAT Reference Document for Energy Efficiency, as well as substantial EU documents including Green Paper on Energy Efficiency, Action Plan for Energy Efficiency and An Energy Policy for Europe. And finally, voluntary instruments include environmental managements systems like ISO 14001 and EMAS, energy auditing and benchmarking. The efficiency of different policy instruments vary quite a lot. Informative instruments lack the commitment from industry and are thus almost ineffective, contrary to EU Emission Trading Scheme, which is said to be the solution to climate problems. The efficiency of administrative means can be placed between those mentioned and voluntary instruments are still quite fresh to be examined fruitfully. However, each instrument has their potential and challenges. Cases from corporate world strengthen the results from theoretical part. Cases were written mainly on the basis of interviews. The interviewees praised the energy efficiency contract of Finnish industry, but the EU ETS takes the leading role of policy instruments. However, for industry the reductions do not come easily.
Resumo:
A short paper for dissemination based on a research piece published by the E15Initiative: Subsidies, Clean Energy, and Climate Change, February 2015. Implemented jointly by ICTSD and the World Economic Forum, the E15Initiative convenes world-class experts and institutions to generate strategic analysis and recommendations for government, business, and civil society geared towards strengthening the global trade and investment system. The paper is also published in Spanish and Portuguese.
Resumo:
There is a strong and growing worldwide research on exploring renewable energy resources. Solar energy is the most abundant, inexhaustible and clean energy source, but there are profound material challenges to capture, convert and store solar energy. In this work, we explore 3C-SiC as an attractive material towards solar-driven energy conversion applications: (i) Boron doped 3C-SiC as candidate for an intermediate band photovoltaic material, and (ii) 3C-SiC as a photoelectrode for solar-driven water splitting. Absorption spectrum of boron doped 3C-SiC shows a deep energy level at ~0.7 eV above the valence band edge. This indicates that boron doped 3C-SiC may be a good candidate as an intermediate band photovoltaic material, and that bulk like 3C-SiC can have sufficient quality to be a promising electrode for photoelectrochemical water splitting.
Resumo:
Recent federal incentives and increased demand for home photovoltaic and small wind electrical systems highlights the need for consistent zoning ordinances and guidance materials for Northglenn residents. This Capstone Project assesses perceived impacts related to renewable energy systems, like noise, safety, aesthetics, and environmental considerations, and provides a model ordinance intended to mitigate these issues. It was concluded a model ordinance would ease and stimulate additions of alternative energy systems in Northglenn. Additionally, this research concluded development of public information could stimulate homeowners into positive decisions. The project also identifies potential financial and environmental benefits of installing such systems in an effort to promote sustainable and clean energy production within the city.
Resumo:
THE ISSUE European Union energy policy is guided by three objectives: sustainability, security of supply and competitiveness. To meet its goals in these areas, the EU is updating its energy strategy with new targets for 2030. The starting point for this is the assessment of the previous EU climate and energy package, at the centre of which were the 20-20-20 targets for 2020. Although the EU is largely on track to meet these targets, EU energy policy is generally not perceived as a success. Recent events have undermined some of the assumptions on which the 2020 package was built, and the policies for achieving the 2020 targets – although at first sight effective – are far from efficient.
Resumo:
Since taking power in 2009, the Alliance for European Integration (AIE) has been trying to end Moldova’s dependence on Russian gas. Currently, natural gas accounts for about 50% of the country’s energy balance (excluding Transnistria), and Gazprom has a monopoly on the supply of gas to the republic. The key element of Chișinău’s diversification project is the construction of the Iasi-Ungheni pipeline, which is designed to link the Moldovan and Romanian gas transmission networks, and consequently make it possible for Moldova to purchase gas from countries other than Russia. Despite significant delays, construction work on the interconnector began in August 2013. The Moldovan government sees ensuring energy independence from Russia as its top priority. The significance and urgency of the project reflect Chișinău’s frustration at Moscow’s continued attempts to use its monopoly of Moldova’s energy sector to exert political pressure on the republic. Nonetheless, despite numerous declarations by Moldovan and Romanian politicians, the Iasi- -Ungheni pipeline will not end Moldova’s dependence on Russian gas before the end of the current decade. This timeframe is unrealistic for two reasons: first, because an additional gas pipeline from Ungheni to Chisinau and a compression station must be constructed, which will take at least five years and will require significant investment; and second, because of the unrelenting opposition to the project coming from Gazprom, which currently controls Moldova’s pipelines and will likely try to torpedo any energy diversification attempts. Independence from Russian gas will only be possible after the the Gazprom-controlled Moldova-GAZ, the operator of the Moldovan transmission network and the country’s importer of natural gas, is divided. The division of the company has in fact been envisaged in the EU’s Third Energy Package, which is meant to be implemented by Moldova in 2020.
Resumo:
Summary. Energy saving has been a stated policy objective of the EU since the 1970s. Presently, the 2020 target is a 20% reduction of EU energy consumption in comparison with current projections for 2020. This is one of the headline targets of the European Energy Strategy 2020 but efforts to achieve it remain slow and insufficient. The aim of this paper is to understand why this is happening. Firstly, this paper examines the reasons why public measures promoting energy efficiency are needed and what form these measures should optimally take (§ 1). Fortunately, over the last 20 years, much research has been done into the famous ‘energy efficiency gap’ (or ‘the energy efficiency paradox’), even if more remains to be done. Multiple explanations have been given: market failures, modelling flaws and behavioural obstacles. Each encompasses many complex aspects. Several types of instruments can be adopted to encourage energy efficiency: measures guaranteeing the correct pricing of energy are preferred, followed by taxes or tradable white certificates which in turn are preferred to standards or subsidies. Information programmes are also necessary. Secondly, the paper analyzes the evolution of the different programmes from 2000 onwards (§ 2). This reveals the extreme complexity of the subject. It deals with quite diverse topics: buildings, appliances, public sector, industry and transport. The market for energy efficiency is as diffuse as energy consumption patterns themselves. It is composed of many market actors who demand more efficient provision of energy services, and that suppliers of the necessary goods and know-how deliver this greater efficiency. Consumers in this market include individuals, businesses and governments, and market activities cover all energy-consuming sectors of the economy. Additionally, energy efficiency is the perfect example of a shared competence between the EU and the Member States. Lastly, the legal framework has steadily increased in complexity, and despite the successive energy efficiency programmes used to build this framework, it has become clear that the gap between the target and the results remains. The paper then examines whether the 2012/27/EU Directive adopted to improve the situation could bring better results. It briefly describes the content of this framework Directive, which accompanies and implements the latest energy efficiency programme (§ 3). Although the Directive is technically complex and maintains nonbinding energy efficiency targets, it certainly represents an improvement in several aspects. However, it is also saddled with a multiplicity of exemption clauses and interpretative documents (with no binding value) which weaken its provisions. Furthermore, alone, it will allow the achievement of only about 17.7% of final energy savings by 2020. The implementation process, which is essential, also remains fairly weak. The paper also gives a glimpse of the various EU instruments for financing energy efficiency projects (§ 4). Though useful, they do not indicate a strong priority. Fourthly, the paper tries to analyze the EU’s limited progress so far and gather a few suggestions for improvement. One thing seems to remain useful: targets which can be defined in various ways (§ 5). Basically, all this indicates that the EU energy efficiency strategy has so far failed to reach its targets, lacks coherence and remains ambiguous. In the new Commission’s proposals of 22 January 2014 – intended to define a new climate/energy package in the period from 2020 to 2030 – the approach to energy efficiency remains unclear. This is regrettable. Energy efficiency is the only instrument which allows the EU to reach simultaneously its three targets: sustainability, competitiveness and security. The final conclusion appears thus paradoxical. On the one hand, all existing studies indicate that the decarbonization of the EU economy will be absolutely impossible without some very serious improvements in energy efficiency. On the other hand, in reality energy efficiency has always been treated as a second zone priority. It is imperative to eliminate this contradiction.