98 resultados para Classificador


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ao longo dos tempos tem existido um avanço, nas empresas, dirigido à preocupação com o bemestar dos trabalhadores, adotando por isso medidas preventivas. A formação especializada em Medicina do Trabalho é indispensável para o exercício de atividades de prevenção dos riscos profissionais e de promoção da saúde. A postura corporal pode ser definida como a posição e a orientação global do corpo e membros relativamente uns aos outros. Qualquer desvio na forma da coluna vertebral pode gerar solicitações funcionais prejudiciais que ocasionam um aumento de fadiga no trabalhador e leva ao longo do tempo a lesões graves. Cada vez mais surgem doenças profissionais provocadas pela adoção de más posturas, na realização de tarefas diárias dos trabalhadores. A boa postura corporal é uma tarefa específica que representa uma interação complexa entre a função biomecânica e neuromuscular. No presente plano de dissertação foram estudados diferentes classificadores tendo como objetivo classificar boas e más posturas corporais de trabalhadores em contexto de trabalho. Assim foram estudados diferentes classificadores de machine learnig, redes neuronais artificiais, support vector machine, árvores de decisão, análise discriminante, regressão logística, treebagger e naíve bayes. Para treino de classificadores foi realizada a aquisição tridimensional da postura da espinha a 100 pessoas, passando por uma parametrização e treino de diferentes classificadores para a determinação automática do tipo de postura corporal. O classificador que obteve melhor desempenho foi o Treebagger com uma classificação para True Positive de 93,3% e True Negative de 96,2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é investigada uma abordagem para extração de feições baseada na otimização da distância de Bhattacharyya em um classificador hierárquico de estrutura binária. O objetivo é mitigar os efeitos do fenômeno de Hughes na classificação de dados imagem hiper-espectrais. A utilização de um classificador em múltiplo-estágio, analisando um sub-conjunto de classes em cada etapa ao invés do conjunto total, permite modos mais eficientes para extrair as feições mais adequadas em cada etapa do procedimento de classificação. Em uma abordagem de árvore binária, somente duas classes são consideradas em cada etapa, permitindo a implementação da distância de Bhattacharyya como um critério para extração de feições em cada nó da árvore. Experimentos foram realizados utilizando dados imagem do sensor AVIRIS. A performance da metodologia proposta é comparada com métodos tradicionais para extração e seleção de feições.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing is one technology of extreme importance, allowing capture of data from the Earth's surface that are used with various purposes, including, environmental monitoring, tracking usage of natural resources, geological prospecting and monitoring of disasters. One of the main applications of remote sensing is the generation of thematic maps and subsequent survey of areas from images generated by orbital or sub-orbital sensors. Pattern classification methods are used in the implementation of computational routines to automate this activity. Artificial neural networks present themselves as viable alternatives to traditional statistical classifiers, mainly for applications whose data show high dimensionality as those from hyperspectral sensors. This work main goal is to develop a classiffier based on neural networks radial basis function and Growing Neural Gas, which presents some advantages over using individual neural networks. The main idea is to use Growing Neural Gas's incremental characteristics to determine the radial basis function network's quantity and choice of centers in order to obtain a highly effective classiffier. To demonstrate the performance of the classiffier three studies case are presented along with the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Técnicas de reconhecimento de padrões tem como principal objetivo classificar um conjunto de amostras, sendo o processo de aprendizado a fase de maior consumo de tempo. O problema pode piorar em ferramentas de classificação interativas, o que pode ser inaceitável para grandes bases de dados. Um exemplo de classificador é o baseado em Floresta de Caminhos Ótimos [8] - OPF. Dado que muitos trabalhos tem sido orientados à implementação de algoritmos de reconhecimento de padrões em ambiente General Purpose Graphics Processing Unit - GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em CUDA, visando aumentar a sua eficiência. A otimização do classificador em CUDA demonstrou uma fase de treinamento mais rápida que a versão original.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classifier support vector machine is used in several problems in various areas of knowledge. Basically the method used in this classier is to end the hyperplane that maximizes the distance between the groups, to increase the generalization of the classifier. In this work, we treated some problems of binary classification of data obtained by electroencephalography (EEG) and electromyography (EMG) using Support Vector Machine with some complementary techniques, such as: Principal Component Analysis to identify the active regions of the brain, the periodogram method which is obtained by Fourier analysis to help discriminate between groups and Simple Moving Average to eliminate some of the existing noise in the data. It was developed two functions in the software R, for the realization of training tasks and classification. Also, it was proposed two weights systems and a summarized measure to help on deciding in classification of groups. The application of these techniques, weights and the summarized measure in the classier, showed quite satisfactory results, where the best results were an average rate of 95.31% to visual stimuli data, 100% of correct classification for epilepsy data and rates of 91.22% and 96.89% to object motion data for two subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software bug analysis is one of the most important activities in Software Quality. The rapid and correct implementation of the necessary repair influence both developers, who must leave the fully functioning software, and users, who need to perform their daily tasks. In this context, if there is an incorrect classification of bugs, there may be unwanted situations. One of the main factors to be assigned bugs in the act of its initial report is severity, which lives up to the urgency of correcting that problem. In this scenario, we identified in datasets with data extracted from five open source systems (Apache, Eclipse, Kernel, Mozilla and Open Office), that there is an irregular distribution of bugs with respect to existing severities, which is an early sign of misclassification. In the dataset analyzed, exists a rate of about 85% bugs being ranked with normal severity. Therefore, this classification rate can have a negative influence on software development context, where the misclassified bug can be allocated to a developer with little experience to solve it and thus the correction of the same may take longer, or even generate a incorrect implementation. Several studies in the literature have disregarded the normal bugs, working only with the portion of bugs considered severe or not severe initially. This work aimed to investigate this portion of the data, with the purpose of identifying whether the normal severity reflects the real impact and urgency, to investigate if there are bugs (initially classified as normal) that could be classified with other severity, and to assess if there are impacts for developers in this context. For this, an automatic classifier was developed, which was based on three algorithms (Näive Bayes, Max Ent and Winnow) to assess if normal severity is correct for the bugs categorized initially with this severity. The algorithms presented accuracy of about 80%, and showed that between 21% and 36% of the bugs should have been classified differently (depending on the algorithm), which represents somewhere between 70,000 and 130,000 bugs of the dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esse trabalho está baseado na investigação dos detectores de falhas aplicando classificadores de classe única. As falhas a serem detectadas são relativas ao estado de funcionamento de cada componente do circuito, especificamente de suas tolerâncias (falha paramétrica). Usando a função de transferência de cada um dos circuitos são gerados e analisados os sinais de saída com os componentes dentro e fora da tolerância. Uma função degrau é aplicada à entrada do circuito, o sinal de saída desse circuito passa por uma função diferenciadora e um filtro. O sinal de saída do filtro passa por um processo de redução de atributos e finalmente, o sinal segue simultaneamente para os classificadores multiclasse e classe única. Na análise são empregados ferramentas de reconhecimento de padrões e de classificação de classe única. Os classficadores multiclasse são capazes de classificar o sinal de saída do circuito em uma das classes de falha para o qual foram treinados. Eles apresentam um bom desempenho quando as classes de falha não possuem superposição e quando eles não são apresentados a classes de falhas para os quais não foram treinados. Comitê de classificadores de classe única podem classificar o sinal de saída em uma ou mais classes de falha e também podem classificá-lo em nenhuma classe. Eles apresentam desempenho comparável ao classificador multiclasse, mas também são capazes detectar casos de sobreposição de classes de falhas e indicar situações de falhas para os quais não foram treinados (falhas desconhecidas). Os resultados obtidos nesse trabalho mostraram que os classificadores de classe única, além de ser compatível com o desempenho do classificador multiclasse quando não há sobreposição, também detectou todas as sobreposições existentes sugerindo as possíveis falhas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações.