937 resultados para Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
Gauss va publicar l’any 1827 Disquisitiones generales circa superficies curvas, obra que ha resultat fonamental en el desenvolupament de la geometria diferencial a partir del segle XIX. La documentació de la qual es disposa sobre la gènesi i el desenvolupament de les idees d’aquesta obra, ens permet, a més de presentar els principals resultats que hi apareixen, fer una aproximació a la figura de Gauss, al seu estil matemàtic
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
We present algorithms for computing the differential geometry properties of intersection Curves of three implicit surfaces in R(4), using the implicit function theorem and generalizing the method of X. Ye and T. Maekawa for 4-dimension. We derive t, n, b(1), b(2) vectors and curvatures (k(1), k(2), k(3)) for transversal intersections of the intersection problem. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using the Plucker map between grassmannians, we study basic aspects of classic grassmannian geometries. For 'hyperbolic' grassmannian geometries, we prove some facts (for instance, that the Plucker map is a minimal isometric embedding) that were previously known in the 'elliptic' case.
Resumo:
Based on lectures given in the spring of 1949; a few of the latest results of work done since that time have been included.
Resumo:
Bibliography: p. vii-viii.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
Caption title.
Resumo:
Mode of access: Internet.
Resumo:
The main aim of this thesis is to investigate the application of methods of differential geometry to the constraint analysis of relativistic high spin field theories. As a starting point the coordinate dependent descriptions of the Lagrangian and Dirac-Bergmann constraint algorithms are reviewed for general second order systems. These two algorithms are then respectively employed to analyse the constraint structure of the massive spin-1 Proca field from the Lagrangian and Hamiltonian viewpoints. As an example of a coupled field theoretic system the constraint analysis of the massive Rarita-Schwinger spin-3/2 field coupled to an external electromagnetic field is then reviewed in terms of the coordinate dependent Dirac-Bergmann algorithm for first order systems. The standard Velo-Zwanziger and Johnson-Sudarshan inconsistencies that this coupled system seemingly suffers from are then discussed in light of this full constraint analysis and it is found that both these pathologies degenerate to a field-induced loss of degrees of freedom. A description of the geometrical version of the Dirac-Bergmann algorithm developed by Gotay, Nester and Hinds begins the geometrical examination of high spin field theories. This geometric constraint algorithm is then applied to the free Proca field and to two Proca field couplings; the first of which is the minimal coupling to an external electromagnetic field whilst the second is the coupling to an external symmetric tensor field. The onset of acausality in this latter coupled case is then considered in relation to the geometric constraint algorithm.
Resumo:
Novel molecular complexity measures are designed based on the quantum molecular kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation describes the temporal evolution of the modelled electronic system and determined the time derivatives for the dynamic quantities. This allows to define the average quantum kinematic characteristics closely related to the curvatures of the electron paths, particularly, the torsion reflecting the chirality of the dynamic system. A special attention has been given to the computational scheme for this chirality measure. The calculations on realistic molecular systems demonstrate reasonable behaviour of the proposed molecular complexity indices.
Resumo:
Consider the celebrated Lyness recurrence $x_{n+2}=(a+x_{n+1})/x_{n}$ with $a\in\Q$. First we prove that there exist initial conditions and values of $a$ for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or $12$ and that these are the only periods that rational sequences $\{x_n\}_n$ can have. It is known that if we restrict our attention to positive rational values of $a$ and positive rational initial conditions the only possible periods are $1,5$ and $9$. Moreover 1-periodic and 5-periodic sequences are easily obtained. We prove that for infinitely many positive values of $a,$ positive 9-period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n\ge5,$ including $n$ infinity. This fact implies that the Lyness map is a universal normal form for most birrational maps on elliptic curves.
Resumo:
Pòster presentat al congrés NPDDS2014