1000 resultados para Classificação supervisionada de imagens
Resumo:
A espécie florestal Myracrodruon urundeuva (Fr. All.) figura desde 1992 na lista de espécies da flora brasileira ameaçadas de extinção e, contudo, manifesta comportamento monodominante em algumas regiões do Estado de Minas Gerais, sobretudo na região do Médio Rio Doce. Este trabalho teve por objetivo comparar métodos de classificação supervisionada de imagens Rapideye para mapeamento de fragmentos florestais monodominados por Myracrodruon urundeuva em Tumiritinga, MG. Foram avaliadas a classificação pelo algoritmo da Maximaverossimilhança (Maxver) e a classificação por Redes Neurais Artificiais (RNA). Foram testadas 19 combinações envolvendo diferentes bandas, componentes principais e o índice de vegetação da diferença normalizada para a classificação da imagem Rapideye. O treinamento da rede foi realizado variando-se a taxa de aprendizado, o número de interações e o número de neurônios na camada interna. A avaliação dos mapas temáticos produzidos foi realizada através dos índices Kappa e Kappa condicional para a classe de uso do solo "aroeira" e pela análise das Matrizes de Confusão. O método que apresentou melhor desempenho foi a classificação de todas as bandas da imagem Rapideye pelo algoritmo Maxver, apresentando coeficientes Kappa 80 e Kappa condicional 90. O mapa temático gerado teve exatidão do usuário igual a 93% e exatidão do produtor igual a 90%, sendo as maiores confusões do classificador para a classe Aroeira Monodominante acometidas entre as classes Mata Nativa e Pasto Manejado. Da imagem temática produzida, extraiu-se a informação de que 22% do Município de Tumiritinga se encontrava sob ocupação da aroeira em monodominância. A análise do uso e cobertura do solo no município não retrata, na região de estudo, o quadro anunciado de espécie ameaçada de extinção, no qual M. urundeuva se encontra.
Resumo:
O objetivo deste trabalho foi estimar a área plantada com soja por meio da normalização da matriz de erros gerada a partir da classificação supervisionada de imagens TM/Landsat‑5. Foram avaliados oito municípios no Estado do Paraná, com dados referentes à safra de 2003/2004. As classificações foram realizadas por meio dos métodos paralelepípedo e máxima verossimilhança, dando origem à "máscara de soja". Os valores do índice Kappa dos oito municípios ficaram acima de 0,6. As estimativas de área de soja, corrigidas por matriz de erros, apresentaram alta correlação com as estimativas oficiais do estado e com as estimativas geradas a partir de um método alternativo denominado "expansão direta". A estimativa de área de soja por meio da normalização da matriz de erros apresenta menor custo e pode subsidiar métodos convencionais na estimativa menos subjetiva de safras.
Resumo:
The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.
Resumo:
Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.
Resumo:
Um dos maiores desafios tecnológicos no presente é o de se conseguir gerar e manter, de uma maneira eficiente e consistente, uma base de dados de objectos multimédia, em particular, de imagens. A necessidade de desenvolver métodos de pesquisa automáticos baseados no conteúdo semântico das imagens tornou-se de máxima importância. MPEG-7 é um standard que descreve o contudo dos dados multimédia que suportam estes requisitos operacionais. Adiciona um conjunto de descritores audiovisuais de baixo nível. O histograma é a característica mais utilizada para representar as características globais de uma imagem. Neste trabalho é usado o “Edge Histogram Descriptor” (EHD), que resulta numa representação de baixo nível que permite a computação da similaridade entre imagens. Neste trabalho, é obtida uma caracterização semântica da imagem baseada neste descritor usando dois métodos da classificação: o algoritmo k Nearest Neighbors (k-NN) e uma Rede Neuronal (RN) de retro propagação. No algoritmo k-NN é usada a distância Euclidiana entre os descritores de duas imagens para calcular a similaridade entre imagens diferentes. A RN requer um processo de aprendizagem prévia, que inclui responder correctamente às amostras do treino e às amostras de teste. No fim deste trabalho, será apresentado um estudo sobre os resultados dos dois métodos da classificação.
Resumo:
Para eliminar divergências na interpretação dos resultados e agilizar os atuais métodos de detecção de fraudes em café torrado e moído, foi estabelecido um método baseado na análise por imagem e fundamentado no princípio de que diferentes materiais de origem orgânica, como o pó de café, podem apresentar reflectâncias distintas em diferentes comprimentos de onda do espectro eletromagnético. Partiu-se da hipótese de que o pó de café adulterado, quando submetido a uma fonte artificial de iluminação, apresenta uma reflectância, nos canais vermelho (R), verde (G) e azul (B), diferente em relação à do pó de café não-adulterado. Após as etapas de limpeza, secagem e homogeneização, foram geradas imagens multiespectrais das amostras de café, por meio de uma lupa acoplada a uma câmara CCD (Charge Coupled Device). A quantificação das impurezas na amostra foi obtida utilizando-se curvas de calibração entre a área relativa obtida pela classificação supervisionada de imagens e a porcentagem de impurezas presentes nas amostras. Esse novo método permite agilidade da resposta, ausência de subjetividade nos resultados e não-destruição das amostras analisadas, e assegura um patamar mínimo de detecção de 95% das impurezas do produto.
Resumo:
Dados de sensoriamento remoto têm sido largamente utilizados para classificação da cobertura e uso da terra, em particular graças à aquisição periódica de imagens de satélite e à generalização dos sistemas de processamento digital de imagens, que oferecem uma variedade de algoritmos de classificação de imagens. Este trabalho teve por objetivo avaliar alguns dos métodos mais comuns de classificações supervisionadas e não supervisionadas para imagens do sensor TM do satélite Landsat-5, em três áreas com diferentes padrões de paisagem em Rondônia: (1) áreas de fazendas de "Médio porte", (2) assentamentos no padrão "Espinha de peixe" e (3) áreas de contato entre floresta e "Cerrado". A comparação com um mapa de referência baseado na estatística Kappa produziu indicadores de desempenho bons ou superiores (melhores resultados - K-médias: k = 0,68; k = 0,77; k = 0,64 e MaxVer: k = 0,71; k = 0,89; k = 0,70, respectivamente nas três áreas citadas), para os algoritmos utilizados. Os resultados indicaram que a escolha de um algoritmo deve considerar tanto a capacidade de discriminar várias assinaturas espectrais em diferentes padrões de paisagem quanto a relação custo/benefício decorrente das várias etapas do trabalho dos operadores que elaboram um mapa de cobertura e uso da terra. Este trabalho apontou a necessidade de esforço mais sistemático de avaliação prévia de várias opções de execução de um projeto específico antes de se iniciar o trabalho de elaboração de um mapa de cobertura e uso da terra.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A utilização de matéria-prima de origem florestal aumentou significativamente nas últimas décadas. A busca por alta produtividade concretizou-se com a introdução de espécies exóticas, principalmente Eucalyptus sp. e Pinus sp. Neste trabalho avaliou-se a precisão da classificação digital obtida no levantamento de povoamentos florestais implantados e naturais da área da carta de Cachoeira do Sul - RS, utilizando técnicas de geoprocessamento, sensoriamento remoto, SIG (sistema de informação geográfica) e GPS (sistema de posicionamento global). Verificou-se que a área é ocupada por vegetação natural (35,54%), Pinus sp. (1,89%) e Eucalyptus sp. (0,77%), cuja precisão na classificação supervisionada digital foi: Exatidão global (85,23%), Kappa (84,90%) e Tau (77,74%). Concluiu-se que os três índices de acurácia podem ser utilizados, apesar de os índices Kappa e Tau mostrarem-se mais consistentes.
Resumo:
No processo de classificação de uma imagem digital, o atributo textura pode ser uma fonte importante de informações. Embora o processo de caracterização da textura em uma imagem seja mais difícil, se comparado ao processo de caracterização de atributos espectrais, sabe-se que o emprego daquele atributo pode aumentar significativamente a exatidão na classificação da imagem. O objetivo deste trabalho de pesquisa consiste em desenvolver e testar um método de classificação supervisionado em imagens digitais com base em atributos de textura. O método proposto implementa um processo de filtragem baseado nos filtros de Gabor. Inicialmente, é gerado um conjunto de filtros de Gabor adequados às freqüências espaciais associadas às diferentes classes presentes na imagem a ser classificada. Em cada caso, os parâmetros utilizados por cada filtro são estimados a partir das amostras disponíveis, empregando-se a transformada de Fourier. Cada filtro gera, então, uma imagem filtrada que quantifica a freqüência espacial definida no filtro. Este processo resulta em um certo número de imagens filtradas as quais são denominadas de "bandas texturais". Desta forma, o problema que era originalmente unidimensional passa a ser multi-dimensional, em que cada pixel passa a ser definido por um vetor cuja dimensionalidade é idêntica ao número de filtros utilizados. A imagem em várias "bandas texturais" pode ser classificada utilizando-se um método de classificação supervisionada. No presente trabalho foi utilizada a Máxima Verossimilhança Gaussiana. A metodologia proposta é então testada, utilizandose imagens sintéticas e real. Os resultados obtidos são apresentados e analisados.
Resumo:
O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
O presente trabalho teve como proposta avaliar a identificação e o mapeamento das áreas de milho da região noroeste do Estado do Rio Grande do Sul a partir de dados multitemporais do sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo do satélite Earth Observing System - EOS-AM (Terra). O algoritmo de classificação supervisionada Spectral Angle Mapper (SAM) foi aplicado com sucesso em uma série multitemporal de imagens EVI pré-processadas. Verificou-se que as áreas classificadas como milho na imagem coincidiam plenamente com áreas mais extensas ou contínuas (> 90 ha) de milho. Áreas de menor extensão ou localizadas em encostas de morros, ao lado de vegetação arbórea, não foram detectadas pelo classificador devido à baixa resolução espacial das imagens. A maior utilidade prática da identificação e da classificação digital das áreas de milho obtidas das imagens MODIS está na sua aplicação para isolar ou complementar o mapeamento das áreas agrícolas visando ao seu monitoramento a partir de diferentes índices de vegetação, derivados de imagens de alta resolução temporal e baixa resolução espacial.