964 resultados para Classical Invariant Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 13F20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing a theoretical description of turbulent plumes, the likes of which may be seen rising above industrial chimneys, is a daunting thought. Plumes are ubiquitous on a wide range of scales in both the natural and the man-made environments. Examples that immediately come to mind are the vapour plumes above industrial smoke stacks or the ash plumes forming particle-laden clouds above an erupting volcano. However, plumes also occur where they are less visually apparent, such as the rising stream of warmair above a domestic radiator, of oil from a subsea blowout or, at a larger scale, of air above the so-called urban heat island. In many instances, not only the plume itself is of interest but also its influence on the environment as a whole through the process of entrainment. Zeldovich (1937, The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz., 7, 1463-1465 (in Russian)), Batchelor (1954, Heat convection and buoyancy effects in fluids. Q. J. R. Meteor. Soc., 80, 339-358) and Morton et al. (1956, Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234, 1-23) laid the foundations for classical plume theory, a theoretical description that is elegant in its simplicity and yet encapsulates the complex turbulent engulfment of ambient fluid into the plume. Testament to the insight and approach developed in these early models of plumes is that the essential theory remains unchanged and is widely applied today. We describe the foundations of plume theory and link the theoretical developments with the measurements made in experiments necessary to close these models before discussing some recent developments in plume theory, including an approach which generalizes results obtained separately for the Boussinesq and the non-Boussinesq plume cases. The theory presented - despite its simplicity - has been very successful at describing and explaining the behaviour of plumes across the wide range of scales they are observed. We present solutions to the coupled set of ordinary differential equations (the plume conservation equations) that Morton et al. (1956) derived from the Navier-Stokes equations which govern fluid motion. In order to describe and contrast the bulk behaviour of rising plumes from general area sources, we present closed-form solutions to the plume conservation equations that were achieved by solving for the variation with height of Morton's non-dimensional flux parameter Γ - this single flux parameter gives a unique representation of the behaviour of steady plumes and enables a characterization of the different types of plume. We discuss advantages of solutions in this form before describing extensions to plume theory and suggesting directions for new research. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a generalized Lagrangian density of 1 + 1 Dimensional O( 3) nonlinear sigma model with subsidiary constraints, different Lagrange multiplier fields and topological term, find a lost intrinsic constraint condition, convert the subsidiary constraints into inner constraints in the nonlinear sigma model, give the example of not introducing the lost constraint. N = 0, by comparing the example with the case of introducing the lost constraint, we obtain that when not introducing the lost constraint, one has to obtain a lot of various non-intrinsic constraints. We further deduce the gauge generator, give general BRST transformation of the model under the general conditions. It is discovered that there exists a gauge parameter beta originating from the freedom degree of BRST transformation in a general O( 3) nonlinear sigma model, and we gain the general commutation relations of ghost field.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper was to evaluate the psychometric properties of a stage-specific selfefficacy scale for physical activity with classical test theory (CTT), confirmatory factor analysis (CFA) and item response modeling (IRM). Women who enrolled in the Women On The Move study completed a 20-item stage-specific self-efficacy scale developed for this study [n = 226, 51.1% African-American and 48.9% Hispanic women, mean age = 49.2 (67.0) years, mean body mass index = 29.7 (66.4)]. Three analyses were conducted: (i) a CTT item analysis, (ii) a CFA to validate the factor structure and (iii) an IRM analysis. The CTT item analysis and the CFA results showed that the scale had high internal consistency (ranging from 0.76 to 0.93) and a strong factor structure. Results also showed that the scale could be improved by modifying or eliminating some of the existing items without significantly altering the content of the scale. The IRM results also showed that the scale had few items that targeted high self-efficacy and the stage-specific assumption underlying the scale was rejected. In addition, the IRM analyses found that the five-point response format functioned more like a four-point response format. Overall, employing multiple methods to assess the psychometric properties of the stage-specific self-efficacy scale demonstrated the complimentary nature of these methods and it highlighted the strengths and weaknesses of this scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 53A07, 53A35, 53A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.