971 resultados para Chromosome 22q11


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of two studies examining the genetic overlap between schizophrenia and velocardiofacial syndrome. In study A, we characterize two interstitial deletions identified on chromosome 22q11 in a sample of schizophrenic patients. The size of the deletions was estimated to be between 1.5 and 2 megabases. In study B, we examine whether variations in deletion size are associated with the schizophrenic phenotype in velocardiofacial syndrome patients. Our results show that a region of the genome that has been previously implicated by genetic linkage analysis can harbor genetic lesions that increase the susceptibility to schizophrenia. Our findings should facilitate identification and cloning of the schizophrenia susceptibility gene(s) in this region and identification of more homogeneous subgroups of patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied the cells from three selected patients with Ph-chromosome-negative chronic myeloid leukemia (CML) by Southern blotting, polymerase chain reaction, and in situ hybridization of informative probes to metaphase chromosomes. All three patients had rearrangement of M-BCR sequences in the BCR gene and expression of one or other of the mRNA species characteristic of Ph-positive CML. Leukemic metaphases studied after trypsin-Giemsa banding were indistinguishable from normal. The ABL probe localized both to chromosome 9 and 22 in each case. A probe containing 3' M-BCR sequences localized only to chromosome 22, and not to chromosome 9 as would be expected in Ph-positive CML. Two new probes that recognize different polymorphic regions distal to the ABL gene on chromosome 9 in normal subjects localized exclusively to chromosome 9 in two patients and to both chromosomes 9 and 22 in one patient. These results show that Ph-negative CML with BCR rearrangement is associated with insertion of a variable quantity of chromosome 9 derived material into chromosome 22q11; there is no evidence for reciprocal translocation of material from chromosome 22 to chromosome 9.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To report on two Brazilian patients with chromosome 22q11 deletion who presented with velopharyngeal insufficiency, congenital heart anomalies, developmental delay, and limb anomalies. The pattern of limb anomalies in these patients, which range from ectrodactyly to limb synostosis, is very uncommon in 22q11 deletion syndrome. Conclusion: These patients widen the spectrum of clinical signs of the 22q11 deletion syndrome and alert researchers to conduct additional investigation in patients with limb involvement with velopharyngeal insufficiency and/or cardiac anomalies, along with developmental delay.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Loss of heterozygosity (LOH) correlates with inactivated tumor suppressor genes. LOH at chromosome arm 22q has been found in a variety of human neoplasms, suggesting that this region contains a tumor suppressor gene(s) other than NF2 important to tumorigenesis. The aim of this study was to evaluate the presence of LOH on chromosome 22q11.2-13 and determine whether there was a relationship between loss in this genomic region and tumor histologic parameters, anatomic site, and survival in patients with squamous cell carcinoma of the head and neck (HNSCC).Methods. Fifty matched blood and HNSCC tumor samples taken at the time of surgical treatment were evaluated for LOH by use of four microsatellite markers mapping to 22q11.2-q13. Clinical information was available for all patients. The frequency and distribution of LOH was correlated with clinical (age, sex, use of tobacco and alcohol, site of primary tumor, clinical stage, adjuvant therapy and overall survival) and histologic parameters (histopathologic stage, tumor differentiation).Results. LOH at 22q was found in 19 of 50 (38%) informative tumors. The respective incidence of allelic loss for the patients was as follows: 28% at D22S421, 10% at D22S277, 8% at D22S44S, and 4% at D22S280. No statistical differences were apparent with a mean follow-up of 30 months. Laryngeal tumors showed a higher incidence of LOH compared with oral tumors.Conclusions. These results suggest that the D22S277 locus may be closely linked to a tumor suppressor gene (TSG) and involved in upper aerodigestive tract carcinogenesis. In particular, laryngeal tumors may harbor another putative TSG on 22q11.2-q12.3 that may play a role in aggressive stage III/IV disease. (C) 2000 John Wiley & Sons, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several lines of evidence have implicated the catechol-O-methyltransferase (COMT) gene as a candidate for schizophrenia (SZ) susceptibility, not only because it encodes a key dopamine catabolic enzyme but also because it maps to the velocardiofacial syndrome region of chromosome 22q11 which has long been associated with SZ predisposition. The interest in COMT as a candidate SZ risk factor has led to numerous case-control and family-based studies, with the majority placing emphasis on examining a functional Val/Met polymorphism within this enzyme. Unfortunately, these studies have continually produced conflicting results. To assess the genetic contribution of other COMT variants to SZ susceptibility, we investigated three single-nucleotide polymorphisms (SNPs) (rs737865, rs4633, rs165599) in addition to the Val/Met variant (rs4680) in a highly selected sample of Australian Caucasian families containing 107 patients with SZ. The Val/Met and rs4633 variants showed nominally significant associations with SZ (P<0.05), although neither of the individual SNPs remained significant after adjusting for multiple testing (most significant P=0.1174). However, haplotype analyses showed strong evidence of an association; the most significant being the three-marker haplotype rs737865-rs4680-rs165599 (global P=0.0022), which spans more than 26 kb. Importantly, conditional analyses indicated the presence of two separate and interacting effects within this haplotype, irrespective of gender. In addition, our results indicate the Val/Met polymorphism is not disease-causing and is simply in strong linkage disequilibrium with a causative effect, which interacts with another as yet unidentified variant approximately 20 kb away. These results may help explain the inconsistent results reported on the Val/Met polymorphism and have important implications for future investigations into the role of COMT in SZ susceptibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular characterization of a UK family with an autosomal dominant congenital cataract associated with microcornea is reported. METHODS: Family history and clinical data were recorded. This phenotype was linked to a 7.6 cM region of chromosome 22q11.2-q12.2, spanning the beta-crystallin gene cluster (ZMax of 3.91 for marker D22S1114 at theta=0). Candidate genes were PCR amplified and screened for mutations on both strands using direct sequencing. RESULTS: Sequencing of the coding regions and flanking intronic sequences of CRYBB2 and CRYBB1 showed the presence of a novel, heterozygous X253R change in exon 6 of CRYBB1. SSCP analysis confirmed that this sequence change segregated with the disease phenotype in all available family members and was not found in 109 ethnically matched controls. CONCLUSIONS: X253R is predicted to elongate the COOH-terminal extension of the protein and would be expected to disrupt beta-crystallin interactions. This is the first documented involvement of CRYBB1 in ocular development beyond cataractogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families. After all quality control checks, the analysis of 707 European-ancestry families included 1615 affected and 1602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction for marker-marker linkage disequilibrium was carried out with 5861 single nucleotide polymorphisms (SNPs; Illumina version 4.0 linkage map). Suggestive evidence for linkage ( European families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in nonparametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-LOD support interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci might exist in the region. In this era of genomewide association and deep resequencing studies, consensus linkage regions deserve continued attention, given that linkage signals can be produced by many types of genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a region. Molecular Psychiatry (2009) 14, 786-795; doi:10.1038/mp.2009.11; published online 17 February 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rearrangements involving chromosomes 2 and 22 were described not only as acquired abnormalities in a variety of human neoplasias but also in the constitutional karyotype suggesting the existence of a greater fragility in some specific regions in these chromosomes. Patients with DiGeorge and Velocardiofacial syndromes have a deletion on 22q11 leading to haploinsufficiency for one or more gene(s). We report a patient with velocardiofacial syndrome in which cytogenetic and fluorescence in situ hybridization analysis showed a rare t(2;22) and deletion in the 22q11 region. © 2007 Lippincott Williams & Wilkins, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Fonoaudiologia - FFC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified. We have used Cre-mediated recombination of LoxP sites in embryonic stem cells and mice to generate a 550-kb deletion encompassing 16 of these genes in the corresponding region on mouse chromosome 16. Mice heterozygous for this deletion are normal and do not exhibit cardiovascular abnormalities. Because mice with a larger deletion on mouse chromosome 16 do have heart defects, the results allow us to exclude these 16 genes as being solely, or in combination among themselves, responsible for the cardiovascular abnormalities in velocardiofacial/DiGeorge syndrome. We also generated mice with a duplication of the 16 genes that may help dissect the genetic basis of “cat eye” and derivative 22 syndromes that are characterized by extra copies of portions of 22q11, including these 16 genes. We also describe a strategy for selecting cell lines with defined chromosomal rearrangements. The method is based on reconstitution of a dominant selection marker after Cre-mediated recombination of LoxP sites. Therefore it should be widely applicable to many cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study investigated the schizophrenia phenotype in 24 subjects with 22q11 deletion syndrome (22qDS) and schizophrenia (22qDS-schizophrenia), a rare but relatively homogenous genetic subtype of schizophrenia associated with a microdeletion on chromosome 22. Individuals with 22qDS are at genetically high risk for schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis of the existence of one or more schizophrenia susceptibility loci on chromosome 22q is supported by reports of genetic linkage and association, meta-analyses of linkage, and the observation of elevated risk for psychosis in people with velocardiofacial syndrome, caused by 22q11 microdeletions. We tested this hypothesis by evaluating 10 microsatellite markers spanning 22q in a multicenter sample of 779 pedigrees. We also incorporated age at onset and sex into the analysis as covariates. No significant evidence for linkage to schizophrenia or for linkage associated with earlier age at onset, gender, or heterogeneity across sites was observed. We interpret these findings to mean that the population-wide effects of putative 22q schizophrenia susceptibility loci are too weak to detect with linkage analysis even in large samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.