912 resultados para Chloride ion diffusion coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the current development of the steady state migration test was reviewed. Experiments were carried out for a series of concrete mixes with the steady state migration test in which conductivity sensor technology is applied. With the developed steady state migration test, conductivity in anolyte, loop current and temperature can be monitored in real time. The experimental results are conductive to understand the mechanism of chloride migration during both unsteady state and steady state. The conductivity of anolyte could be used to calculate the chloride concentration in anolyte and the theoretical correlation between them was explained. Over all, the developed steady state migration is an effective, convenient, well-defined in theory and plentiful with information method which could be used to determine the chloride diffusion coefficient of cementitious materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental study on the resistance of lightweight aggregate concretes to chloride-ion penetration in comparison to that of normal weight concrete of similar w/c. Salt ponding test (based on AASHTO T 259), rapid chloride permeability test (ASTM C 1202) and rapid migration test (NT Build 492) were carried out to evaluate the concrete resistance to the chloride-ion penetration. Results indicate that in general the resistance of the LWAC to the chloride-ion penetration was in the same order as that of NWAC of similar w/c. However, the increase in cumulative LWA volume and the incorporation of finer LWA particles led to higher charge passed, migration coefficient, and diffusion coefficient. Since the LWACs had lower 28-day compressive strength compared with that of the NWAC of similar w/c, the LWACs may have equal or better resistance to the chloride-ion penetration compared with the NWAC of equivalent strength. The trend of the resistance of concretes to chloride-ion penetration determined by the three test methods was reasonably consistent although there were some discrepancies due to different test methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new method to estimate the diffusion coefficient and transference number of a salt or an electroactive ion in a solution with little or no supporting electrolyte. The above two parameters can be obtained from a single potential step experiment without previous knowledge of either one. It would appear that the method could also be used in the study of ion transport in a high viscosity solvent or a solid electrolyte. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ingress of chlorides into concrete is predominantly by the mechanism of diffusion and the resistance of concrete to the transport of chlorides is generally represented by its coefficient of diffusion. The determination of this coefficient normally requires long test duration (many months). Therefore, rapid test methods based on the electrical migration of ions have widely been used. The current procedure of chloride ion migration tests involves placing a concrete disc between an ion source solution and a neutral solution and accelerating the transport of ions from the source solution to the neutral solution by the application of a potential difference across the concrete disc. This means that, in order to determine the chloride transport resistance of concrete cover, cores should be extracted from the structure and tested in laboratories. In an attempt to facilitate testing of the concrete cover on site, an in situ ion migration test (hereafter referred to as PERMIT ion migration test for the unique identification of the new test) was developed. The PERMIT ion migration test was validated in the lab by carrying out a comparative investigation and correlating the results with the migration coefficient from the one-dimensional chloride migration test, the effective diffusion coefficient from the normal diffusion test and the apparent diffusion coefficient determined from chloride profiles. A range of concrete mixes made with ordinary Portland cement was used for this purpose. In addition, the effects of preferential flow of ions close to the concrete surface and the proximity of reinforcement within the test area on the in situ migration coefficients were investigated. It was observed that the in situ migration index, found in one working day, correlated well with the chloride diffusion coefficients from other tests. The quality of the surface layer of the cover concrete and the location of the reinforcement within the test area were found to affect the flow of ions through the concrete during the test. Based on the data, a procedure to carry out the PERMIT ion migration test was standardised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The top faces of float glass samples were exposed to vapors resulting from the decomposition of KNO3 at 565 degrees C for up to 32 h. X-ray dispersive spectra (EDS) show that K+ ions migrate into the glass. The K+ concentration profile was obtained and its diffusion coefficient was calculated by the Boltzmann-Matano technique. The mean diffusion coefficient was approximately 10 X 10(-11) cm(2) s(-1). It was observed that the refractive index and the Vickers hardness decrease with the depth (after the removal of successive layers), and their profiles were thus obtained. These profiles enabled the calculation of the diffusion coefficient of K+ through the Boltzmann-Matano technique, with mean results ranging between 6 x 10(-11) and 30 x 10(-11) cm(2) s(-1). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorides induce local corrosion in the steel reinforcements when reaching the bar surface. The measurement of the rate of ingress of these ions, is made by mathematically fitting the so called “error function equation” into the chloride concentration profile, obtaining so the diffusion coefficient and the chloride concentration at the concrete surface. However, the chloride profiles do not always follow Fick’s law by having the maximum concentration at the concrete surface, but often the profile shows a maximum concentration more in the interior, which indicates a different composition and performance of the most external concrete layer with respect to the internal zones. The paper presents a procedure prepared during the time of the RILEM TC 178-TMC: “Testing and modeling chloride penetration in concrete”, which suggests neglecting the external layer where the chloride concentration increases and using the maximum as an “apparent” surface concentration, called C max and to fit the error function equation into the decreasing concentration profile towards the interior. The prediction of evolution should be made also from the maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer of chloride ions into a low resistance anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In all cases, concentration polarization of Cl- ions is exterior to the membrane. It controls the flux and produces the limiting currents: either steady state or transient (peak type) current. In CV experiments, when the size of the holes in the membrane was much smaller than the distance between membrane holes, the Cl- anion transfer showed steady state voltammetric behavior. Each hole in the membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in the membrane was large or the distance between membrane holes was small, the CV curve of the Cl- anion transfer across the membrane showed a peak shape, which was attributed to linear diffusion. In AC impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low DC bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing DC bias and only one semicircle was observed at higher DC bias. The parameters related to kinetic and membrane properties were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental study to evaluate the influence of coarse lightweight aggregate (LWA), fine LWA and the quality of the paste matrix on water absorption and permeability, and resistance to chloride-ion penetration in concrete. The results indicate that incorporation of pre-soaked coarse LWA in concrete increases water sorptivity and permeability slightly compared to normal weight concrete (NWC) of similar water-to-cementitious materials ratio (w/cm). Furthermore, resistance of the sand lightweight concrete (LWC) to water permeability and chloride-ion penetration decreases with an increase in porosity of the coarse LWA. The use of fine LWA including a crushed fraction <1.18 mm reduced resistance of the all-LWC to water and chloride-ion penetration compared with the sand-LWC which has the same coarse LWA. Overall, the quality of the paste matrix was dominant in controlling the transport properties of the concrete, regardless of porosity of the aggregates used. With low w/cm and silica fume, low unit weight LWC (_1300 kg/m3) was produced with a higher resistance to water and chloride-ion penetration compared with NWC and LWC of higher unit weights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durability is a significant issue to focus on for newly developed structural lightweight cement composite (ULCC). This paper presents an experimental study to evaluate the resistance of ULCC to water and chloride ion penetration. Chloride penetrability and sorptivity were evaluated for ULCC (unit weight about 1450 kg/m3) and compared with those of a normal weight concrete (NWC), a lightweight aggregate concrete (LWC), and an ultra lightweight composite with proprietary cementitious binder (DB) (unit weight about 1450 kg/m3) at similar compressive strength of about 60 MPa. Rapid chloride penetrability test, rapid migration test, water absorption (sorptivity) test, and water permeability test were conducted on these mixtures. Results indicate that ULCC and DB had comparable performance. Compared with control LWC and NWC at similar strength level, the ULCC and DB mixtures had higher resistance to chloride ion penetration, lower water absorption and virtually impermeable to water penetration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental study to evaluate the effect of coarse and fine LWA in concrete on its water absorption and permeability, and resistance to chloride-ion penetration. In additions, LWC with lower unit weight of about 1300 kg/m3 but high resistance to water and chloride-ion penetration was developed and evaluated. The results indicate that the incorporation of coarse LWA in concrete increases water sorptivity and permeability slightly compared to NWC of similar w/c. The resistance of the sand-LWC to chloride-ion penetration depends on porosity of the coarse LWA. Fine LWA has more influence on the transport proper-ties of concrete than coarse LWA. Use of lightweight crushed sand <1.18 mm reduced the resistance of the LWC to water and chloride-ion penetration to some extent. With low w/cm and silica fume, low unit weight LWC (~1300 kg/m3) was produced with higher resistance to water and chloride ion penetration compared with concretes of higher unit weights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.