1000 resultados para Chiroptical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new inherently chiral calix[4]arene ICC 1 has been disclosed. The dissymmetry of 1 is generated from a chirality plane in the quinol moiety of a 1,3-bridged bicyclic calix[4]arene. ICC 1 has been resolved by enantioselective HPLC, and the chiroptical properties of both isolated antipodes (pS)-1 and (pR)-1 confirm their enantiomeric nature. The absolute configuration of the (pS)-1/(pR)-1 enantiomeric pair was established through time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (CD) spectra. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiroptical spectroscopies play a fundamental role in pharmaceutical analysis for the stereochemical characterisation of bioactive molecules, due to the close relationship between chirality and optical activity and the increasing evidence of stereoselectivity in the pharmacological and toxicological profiles of chiral drugs. The correlation between chiroptical properties and absolute stereochemistry, however, requires the development of accurate and reliable theoretical models. The present thesis will report the application of theoretical chiroptical spectroscopies in the field of drug analysis, with particular emphasis on the huge influence of conformational flexibility and solvation on chiroptical properties and on the main computational strategies available to describe their effects by means of electronic circular dichroism (ECD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The combination of experimental chiroptical spectroscopies with state-of-the-art computational methods proved to be very efficient at predicting the absolute configuration of a wide range of bioactive molecules (fluorinated 2-arylpropionic acids, β-lactam derivatives, difenoconazole, fenoterol, mycoleptones, austdiol). The results obtained for the investigated systems showed that great care must be taken in describing the molecular system in the most accurate fashion, since chiroptical properties are very sensitive to small electronic and conformational perturbations. In the future, the improvement of theoretical models and methods, such as ab initio molecular dynamics, will benefit pharmaceutical analysis in the investigation of non-trivial effects on the chiroptical properties of solvated systems and in the characterisation of the stereochemistry of complex chiral drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supramolecular organization of fluorene building blocks in a DNA scaffold is described. The molecular assembly into ordered pi-aggregates leads to distinct changes in the electronic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of chiral and achiral ligands protecting the inner Au9 core of the Au18(SR)14 cluster is studied based on density functional theory (DFT) and its corrected long-range interaction (DFT-D) approach. It was found that the electronic properties (energy levels) depend on the specific ligands, which induce distinct distortions on the Au–S framework. However, the substitution of S-c-C6H11 as SCH3 ligands may be considered to be correct given the obtained resemblance to the displayed bonding, optical and chiroptical properties. A further comparison of the CD and UV spectra displayed by the Au18 cluster protected by chiral and achiral ligands attests that more intense profiles are featured by ligands including phenyl rings and/or oxygen atoms such that the Au18 cluster protected by either achiral metamercaptobenzoic acid (m-MBA) or achiral SPh ligands displays more intense UV and CD signals. These results provide new insight into the effect of ligands on thiolated gold clusters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the X-ray determined structure of the thiolated Au18 cluster has been reported. In this communication, we addressed a study of structures and chiroptical properties of thiolated Au18 cluster doped with up to ten Ag atoms, which have been calculated by Time Dependent Density Functional Theory (TD-DFT). The number of Ag atoms was steadily varied and more stable isomers showed optical and Circular Dichroism (CD) spectra distinct from that found for the parent Au18 cluster. Doping with more than four Ag atoms results in enhancement of the oscillator strength of the HOMO–LUMO peak and it is expected that this feature can be exploited for photoluminescence applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a remarkable level of interest in the development of π-conjugated polymers (ICPs) which have been employed, thanks to their promising optical and electronic properties, in numerous applications including photovoltaic cells, light emitting diodes and thin-film transistors. Although high power conversion efficiency can be reached using poly(3-alkylthiophenes) (P3ATs) as electron-donating materials in polymeric solar cells of the Bulk-Heterojunction type (BHJ), their relatively large band gap limits the solar spectrum fraction that can be utilized. The research work described in this dissertation thus concerns the synthesis, characterization and study of the optical and photoactivity properties of new organic semiconducting materials based on polythiophenes. In detail, various narrow band gap polymers and copolymers were developed through different approaches and were characterized by several complementary techniques, such as gel permeation chromatography (GPC), NMR spectroscopy, thermal analyses (DSC, TGA), UV-Vis/PL spectroscopy and cyclic voltammetry (CV), in order to investigate their structural and chemical/photophysical properties. Moreover, the polymeric derivatives were tested as active material in air-processed organic solar cells. The activity has also been devoted to investigate the behavior of polythiophenes with chiral side chain, that are fascinating materials capable to assume helix supramolecular structures, exhibiting optical activity in the aggregated state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of two new inherently chiral calix[4]arenes (ICCs, 1 and 2), endowed with electron-rich concave surfaces, has been achieved through the desymmetrization of a lower rim distal-bridged oxacyclophane (OCP) macrocycle. The new highly emissive ICCs were resolved by chiral HPLC, and the enantiomeric nature of the isolated antipodes proved by electronic circular dichroism (CD). Using time-dependent density functional calculations of CD spectra, their absolute configurations were established. NMR studies with (S)-Pirkle's alcohol unequivocally showed that the host-guest interactions occur in the chiral pocket comprehending the calix-OCP exo cavities and the carbazole moieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neolignans, generated by oxydative dimerization of propenylphenol and/or allylphenol, undergo further modifying steps. These biosynthetic reactions, confirmed in vitro, include Cope, retro-Claisen and Claisen rearrangements. Additionally acid catalysis effects convertions of bicyclo [3.2.1] octanoid neolignans into hydrobenzofuranoid neolignans, or inversely of hydrobenzofuranoid neolignans into bicyclo [3.2.1] octanoid neolignans, of hydrobenzofuranoid neolignans into futoenone type neolignans, of tetrahydrofuran neolignans into aryltetralin neolignans, as well as modifications by Friedel - Crafts reactions and the transformation of aryltetralin neolignans into arylindanones by pinacoline - pinacolone type rearrangement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of hydroxyl groups into ligands is able to transfer high hydrophilic features to the related metal systems. The atom-economy synthetic procedure adopted which consists in the one-step Cyclopentene-oxide ring opening, quantitatitatively affords stereoselective formation of the multi-hydroxyl rac-1,2,4- C5H2[CH(CH2)3CHOH]3 Cpººº ligand1. Rh complexation of Cpººº gives rise to a novel class of water-soluble complexes (L,L)RhCpººº (LL=NBD 1, COD 2, CH2CH2 3, CO 4) (Scheme 1) characterized by their spectroscopic features (ESI-MS, IR, 2D NMR, n.O.e.). The X-ray diffraction studies of 1a reveal the occurrence of one couple of enantiomeric pairs in the crystal structure, whilst the crystal packing shows an interesting self-organization in chains of dimeric units of 1a, promoted by strong intermolecular hydroxyl H-bonding. This effect has been exploited by performing VT NMR experiments in different solvents (CDCl3, Py, DMSO). Unpredictably, in the absence of chiral tag, 1 exhibits solvent-dependent chiroptical properties (CD, αD^ 25), which are correlated to UV transitions and DFT calculations. The intra/inter molecular H-binding is crucial in driving the equilibrium between the observed atropisomers 1a and 1b, by varying the planar chirality on the two π-complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much effort has been devoted in the recent years to the investigation of optically active polythiophenes characterized by the presence of a chiral moiety linked to the 3-position of the aromatic ring. In addition to their potential technological applications as materials for enantioselective electrodes and membranes, chiral poly(thiophene)s offer the possibility of studying the structural changes accompanying the transition from the disordered state by following the variation of their chiroptical properties by circular dichroism (CD). In solution of a good solvent, that kind of polythiophenes doesn’t display any optical activity arising from the presence of dissymmetric conformation of the backbone, as shown by circular dichroism (CD) spectra. When the macromolecules begin to aggregate, as it occurs e.g. by addition of a poor solvent, or lowering the solution temperature, or when the macromolecules are assembled in the solid state as thin films obtained by solution casting or spin coating, significant CD bands are observed in the spectral region related to the electronic absorptions of the aromatic polythiophene chromophore. These CD bands are indicative of a chiral macromolecule arrangement of one prevailing chirality. The synthesis of -substituted polythiophenes can be carried out starting from the corresponding -substituted mono- or oligomeric thiophenic monomers under regioselective or regiospecific conditions in order to minimize or avoid the formation of head-to-head dyads unfavourably affecting the presence of coplanar conformations of thiophene rings as a consequence of steric interactions between the side-chain substituents, both in solution and in the solid state. To this regard, non-symmetrically substituted monomers require therefore to perform the polymerization in the presence of highly demanding catalysts and reaction condition, whereas with symmetrically substituted oligothiophenic monomers containing the -substituents located far apart from the reacting sites, it is instead possible to obtain regioregular macromolecules by adopting more simple and economic polymerization methods, such as, e. g., the chemical oxidative polymerization with iron (III) trichloride. In order to verify how the polymer structure affects its optical activity, further poly-3-alkylthiophenes, substituted by an enantiomerically pure chiral alkyl group, namely poli[3,3”-di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’:5’,2”-terthiophene] (PDMBOETT), poli[3,3’di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’-bitiofene] (PDMBOEBT), poli[3,3””-didodecyl-4’,3”’-di(S)-(+)-2-methylbutyl-2,2’:5’,2”:5”,2”’:5”’,2””-quinquethiophene (PDDDMBQT) have been synthesized and characterized by instrumental techniques. The spectroscopic behaviour of thin films of poly(DDDMBQT) has been investigated in the solid state under different sample preparation procedures. It was also compared with the behaviour of polymers previously made. The experimental results are interpreted in terms of influence of the side-chain substituents on the extent of planarity of the polymeric chains and the formation of optically active chiral aggregates. In recent years conjugated block copolymers have received considerable attention. It is well known that conjugated block copolymers composed of two electronically different blocks can have morphologic and optical properties, that differ from those of their homopolymers. A recent study has also shown that the electronic properties and the supramolecular organization of one conjugated block can also be influenced by the other block. In order to study better this behavior, a new conjugated block copolymers, composed of a regioregular hydrophylic block and a regioregular hydrophobic block namely poli[3[2-(2-metossietossi)etossi]metiltiofene]-co- poli[3(1-octilossi)tiofene], has been synthesized and characterized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py3) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5 Hz, 30 rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows.