983 resultados para Chiral Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aromatic dioxygenases have been found to catalyse single and tandem oxidation reactions of conjugated polyenes. Rational selection and design of dioxygenases, allied to substrate shape, size and substitution pattern, has been used to control regiochemistry and stereochemistry during the oxygenation process. The resulting enantiopure bioproducts have been increasingly utilised as precursors for new and alternative routes in chiral synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO), secreted by marine fungus Caldariomyces fumago, is the most versatile catalyst among known heme enzymes. Chloroperoxidase can catalyze epoxidation reactions with high enantioselectivity and high yield, which makes CPO an attractive candidate for both industrial and medicinal chiral synthesis. Toward this end, we have constructed two CPO mutants, F103A and N74V. Chiral HPLC was used to evaluate the enantioselectivity and yield of CPO and the mutants toward the epoxidation of styrene and its derivatives. Both of the mutants show dramatically changed epoxidation profiles compared to the parent protein. This information provided fresh insight into the mechanism through which CPO achieves its enantioselectivity. Furthermore, effort was made to understand the biological function of CPO through characterization of CPO catalyzed oxidation of dimethylsulfoniopropionate (DMSP), a secondary metabolite of many marine algal species that plays a pivotal role in marine ecology and global climate.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double or nothing! Recently the total ynthesis of secalonic acids A and D was reported. This work and other natural product syntheses with a dimerization step as a common feature are featured in this highlight. The significant biological activity of the secalonic acids and the fact that their synthesis has fascinated synthetic chemists for the past forty years make this work a milestone in natural product synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enantiospecific syntheses of diquinane and linear triquinanes were accomplished, starting from the readily available alpha-campholenaldehyde employing a Nazarov reaction as the key step. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contrary to that of phenyl derivative 1 the radical 4 adds to radicophiles in an inter- followed by intra-molecular radical Michael addition (radical annulation), furnishing a novel route to chiral isotwistanes 5.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is primarily concerned with the enzyme- catalysed synthesis of sulfoxides using reductase and dioxygenase enzymes. Chapter 1 provides an introduction to the topic of redox chemistry with particular emphasis on the application of reductase and dioxygenase enzymes in organosulfur chemistry. Earlier literature methods for the production of enantiopure sulfoxides are reviewed. A brief discussion of the methods used for the determination of enantiomeric excess and absolute configuration is provided. Chapter 2 contains results obtained using a range of whole-cell bacteria each using a dimethyl sulfoxide reductase enzyme. The synthesis of a series of racemic sulfoxides and the development of appropriate CSPHPLC analytical methods is discussed. Kinetic resolutions of a series of sulfoxides have been achieved. Chapter 3 contains a presentation of results using dioxygenase enzymes as biocatalysts for the asymmetric sulfoxidation of dialkyl sulfoxides including thioacetal sulfoxides. A new range of monosulfoxides, cis-dihydrodiols and cis- dihydrodiol sulfoxides have been isolated in enantiopure form. Chapter 4 is focussed on the application of chiral sulfoxides in synthesis. A new chemoenzymatic route to diol sulfoxide enantiomers and the derived enantiopure phenols and catechols is discussed. The application of chemically synthesised sulfoxide enantiomers in the production of hydroxy sulfoxides is reported. Chapter 5 provides a full experimental section where the synthesis of sulfides and racemic sulfoxides is included. The methods used in the isolation and characterisation of bioproducts from the biotransformation are discussed and full experimental details given.