950 resultados para Chemistry, Biochemistry|Engineering, Biomedical


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac troponin I (cTnI) is one of the most useful serum marker test for the determination of myocardial infarction (MI). The first commercial assay of cTnI was released for medical use in the United States and Europe in 1995. It is useful in determining if the source of chest pains, whose etiology may be unknown, is cardiac related. Cardiac TnI is released into the bloodstream following myocardial necrosis (cardiac cell death) as a result of an infarct (heart attack). In this research project the utility of cardiac troponin I as a potential marker for the determination of time of death is investigated. The approach of this research is not to investigate cTnI degradation in serum/plasma, but to investigate the proteolytic breakdown of this protein in heart tissue postmortem. If our hypothesis is correct, cTnI might show a distinctive temporal degradation profile after death. This temporal profile may have potential as a time of death marker in forensic medicine. The field of time of death markers has lagged behind the great advances in technology since the late 1850's. Today medical examiners are using rudimentary time of death markers that offer limited reliability in the medico-legal arena. Cardiac TnI must be stabilized in order to avoid further degradation by proteases in the extraction process. Chemically derivatized magnetic microparticles were covalently linked to anti-cTnI monoclonal antibodies. A charge capture approach was also used to eliminate the antibody from the magnetic microparticles given the negative charge on the microparticles. The magnetic microparticles were used to extract cTnI from heart tissue homogenate for further bio-analysis. Cardiac TnI was eluted from the beads with a buffer and analyzed. This technique exploits banding pattern on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by a western blot transfer to polyvinylidene fluoride (PVDF) paper for probing with anti-cTnI monoclonal antibodies. Bovine hearts were used as a model to establish the relationship of time of death and concentration/band-pattern given its homology to human cardiac TnI. The final concept feasibility was tested with human heart samples from cadavers with known time of death. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufacturers. These cases were developed in the context of an inquiry-guided instruction model. By bringing tangible chemistry examples into the classroom we provide an opportunity for engineering students to apply this science to familiar products in hopes that they will appreciate chemistry more, will be motivated to study concepts in greater detail, and will connect the relevance of chemistry to everyday life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return. In contrast, a fixed-speed pump caused a simulated ventricular suction event during low venous return and higher ventricular volumes during high venous return. The preload sensitivity was increased from 0.011 L/min/mmHg in fixed speed mode to 0.47L/min/mmHg, a value similar to that of the native healthy heart. The sensitivity varied automatically to maintain the LAP and LVADQ within a predefined zone. This control strategy requires the implantation of a pressure sensor in the left atrium and a flow sensor around the outflow cannula of the LVAD. However, appropriate pressure sensor technology is not yet commercially available and so an alternative measure of preload such as pulsatility of pump signals should be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiobacillus ferrooxidans cells grown on sulfur, pyrite, and chalcopyrite exhibit greater hydrophobicity than ferrous ion-grown cells. The isoelectric points of sulfur-, pyrite-, and chalcopyrite-grown cells were observed to be at a pH higher than that for ferrous ion-grown cells. Microbe-mineral interactions result in change in the surface chemistry of the organism as well as that of the minerals with which it has interacted. Sulfur, pyrite, and chalcopyrite after interaction with T. ferrooxidans exhibited a significant shift in their isoelectric points from the initial values exhibited by uninteracted minerals. With antibodies raised against sulfur-grown T. ferrooxidans, pyrite- and chalcopyrite-grown cells showed immunoreactivity, whereas ferrous ion-grown cells failed to do so. Fourier transform infrared spectroscopy of sulfur-grown cells suggested that a proteinaceous new cell surface appendage synthesized in mineral-grown cells brings about adhesion to the solid mineral substrates. Such an appendage was found to be absent in ferrous ion-grown cells as it is not required during growth in liquid substrates.