885 resultados para Cheese texture
Resumo:
The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.
Jersey milk suitability for Cheddar cheese production: process, yield, quality and financial impacts
Resumo:
The aim of this study was to first evaluate the benefits of including Jersey milk into Holstein-Friesian milk on the Cheddar cheese making process and secondly, using the data gathered, identify the effects and relative importance of a wide range of milk components on milk coagulation properties and the cheese making process. Blending Jersey and Holstein-Friesian milk led to quadratic trends on the size of casein micelle and fat globule and on coagulation properties. However this was not found to affect the cheese making process. Including Jersey milk was found, on a pilot scale, to increase cheese yield (up to + 35 %) but it did not affect cheese quality, which was defined as compliance with the legal requirements of cheese composition, cheese texture, colour and grading scores. Profitability increased linearly with the inclusion of Jersey milk (up to 11.18 p£ L-1 of milk). The commercial trials supported the pilot plant findings, demonstrating that including Jersey milk increased cheese yield without having a negative impact on cheese quality, despite the inherent challenges of scaling up such a process commercially. The successful use of a large array of milk components to model the cheese making process challenged the commonly accepted view that fat, protein and casein content and protein to fat ratio are the main contributors to the cheese making process as other components such as the size of casein micelle and fat globule were found to also play a key role with small casein micelle and large fat globule reducing coagulation time, improving curd firmness, fat recovery and influencing cheese moisture and fat content. The findings of this thesis indicated that milk suitability for Cheddar making could be improved by the inclusion of Jersey milk and that more compositional factors need to be taken into account when judging milk suitability.
Resumo:
Le fromage Mozzarella entre dans la composition de plusieurs mets populaires d’Amérique du Nord. L’aptitude de ce fromage à être râpé et ses propriétés caractéristiques de cuisson en font un ingrédient idéal. Ces qualités sont attribuées principalement aux propriétés physiques particulières de ce fromage sous certaines conditions de cisaillement et de température. Le but de ce projet était d’évaluer l’impact de différentes stratégies couramment mises en oeuvre dans l’industrie fromagère sur la composition, la microstructure et les propriétés physiques du fromage. Diverses stratégies ont été étudiées : les conditions de filage du caillé lors du procédé de « pasta filata », l’addition de protéines sériques dénaturées, le contrôle de la minéralisation et le vieillissement du fromage. Les résultats ont démontré que le contrôle de l’intensité mécanique et thermique fournie lors du filage permettait respectivement de réduire les pertes de solides et d’améliorer la répartition de la phase aqueuse dans la matrice fromagère. L’aptitude au râpage du fromage peut être optimisée en combinant l’utilisation de plusieurs stratégies dont la réduction du calcium colloïdal, un temps de vieillissement adéquat et un râpage à basse température. Par ailleurs, des changements aux facteurs mentionnés précédemment sont apportés lors de l’ajout de protéines sériques dénaturées, ces dernières ayant un impact sur la composition et la structure du fromage. Des modèles prédictifs de l’aptitude au râpage ont été développés en sélectionnant uniquement les descripteurs de composition et de texture pertinents. La perception sensorielle du fromage cuit sur pizza et les propriétés physiques du fromage fondu ont été considérablement influencées par l’évolution physico-chimique du fromage au cours du vieillissement. L’utilisation d’une nouvelle approche pour la caractérisation des propriétés rhéologiques du fromage fondu sous fortes contraintes a permis d’établir de bonnes relations avec les descripteurs sensoriels de texture. Ce travail a permis de valider l’hypothèse que l’utilisation d’une ou plusieurs stratégies simples et accessibles pouvait être mise de l’avant afin d’optimiser les propriétés physiques du fromage Mozzarella. Cela contribue à une meilleure compréhension des facteurs pouvant être contrôlés afin de développer des fromages avec des attributs spécifiques, lorsqu’utilisés comme ingrédient.
Resumo:
Purpose – Thistle flower( Cynara cardunculus) aqueous extracts, as rich source of milk-clotting peptidases, have been widely used for cheeses marketed under the Registry of the Protected Designation of Origin, as it is the case of Serra da Estrela cheese, manufactured from raw ewes’ milk and without addition of any commercial starter culture. This paper aims at studying the influence of six different ecotypes of thistle flowers in cheese properties during the ripening and of final products. Design/methodology/approach – Cheeses were produced with different thistle flower extracts and then the clotting time, weight and colour of cheeses, as well as texture properties and sensorial characteristics, were evaluated. Findings – The clotting time varied from 47 to 66 min, and the weight loss along ripening varied between 32 and 40 per cent. There was some influence of thistle flower ecotype on the colour during ripening and in the final product. The results of texture analysis revealed significant differences between the thistle ecotypes: crust firmness varying from 2.4 to 5.6 N; inner firmness from 0.82 to 1.82 N; stickiness from 0.5 to 1.60 N; adhesiveness from 3.0 to 11.3 N.s; and Ecotype C was particularly distinguishable. Sensorial evaluation revealed differences among the cheeses, with Ecotype C receiving the highest score for global appreciation. Originality/value – The usage of different extracts of thistle flower to produce Serra da Estrela cheese with different properties is a novelty, and it allows the possibility of manipulating this parameter in the future so as to produce cheeses with specific characteristics, addressed to different consumer targets.
Resumo:
Sediment descriptions and lithostratigraphy (chapter 6.4) NANSEN BASIN The upperrnost 20-50 cm of sedirnents in the Nansen Basin norrnally cornprise soft dark brown, brown-grayish and brown clay. Except for the toprnost clay, the four piston cores retrieved, contained quite different lithologies: a rnuddy diarnicton with outsized clasts (PS2157-6), sandy-silt beds alternating with clay beds (PS2159-6), and silty clay beds of brownish and grayish colours (PS2161-3). Core PS2208-3 was retrieved frorn a plateau on a searnount. The plateau was serni-encircled by hills. The upper 250 cm of this core cornprise brown and olive brown clays. Below these are several sandlayers and a 74 cm thick unit of a sandy mud with rnud-clasts up to 20 cm in diameter. GAKKEL RIDGE The uppermost 20-50 cm of sediments on the Gakkel Ridge comprise soft dark brown, brown, grayish brown clay. In most of the cores there are two horizons of brown clay separated by olive brown clay. The upper horizon is darker. The older stratigraphy is rather varied. Core PS2165-1 contains several thin gray sandlsilt layers, probably distal turbidites. The sarne is found in Core PS2167-1. This core also has a thick (approx. 2 rn) coarse grained turbidite containing large rnud clasts and basaltic rock fragrnents. The color of the turbiditic layers is dark gray. There are several horizons of hernipelagic sandylsilty clays with quite a variety in colours; black, gray, olive, brown, yellowish brown and reddish. The colour variation rnay be due to hydrotherrnal activity or provenance or a shift in redox potential. Cores PS2168-2 and PS2169-1 have typical sequences of very dark gray sandy mud with sharp lower boundaries grading upwards into olive brown clay. Below the lower boundary is often a thin (1-2 cm) gray clay layer. AMUNDSEN BASIN The giant box cores (GKG) provided in most cases excellently preserved sedirnent surfaces which consisted in the entire Amundsen Basin of dark brown to dark grayish brown silty clay with few dropstones and common calcareous microfossils (foraminifers and calcareous nannofossils). The brown and grayish brown color of the sediment surface is a result of the oxidizing conditions at the seafloor due to the rapid renewal of the bottom water rnasses. Planktic forarninifers and calcareous nannofossils are relatively frequent and well preserved despite the rernote location of the basin and its water depths of >4000 rn. Srnear slide descriptions have shown that the surface sedirnents consist dorninantly of clays to silty rnuds with clay rninerals and quartz as the rnost important constituents. The coarse fractions contained besides planktic and benthic forarninifers and coarse clastic rnaterials, rare bivalves, dropstones and mud clasts. The Station PS2190 at the North Pole is a particular good exarnple of the type of sedirnents deposited at the sea floor surface of the Arnundsen Basin, with hornogenous dark brown soft clay covering a sedirnent sequence of highly variable cornposition. Nurnerous giant box cores also provide insight into the detailed lithostratigraphy of the upperrnost sedirnent layers. Twelve box cores have been collected frorn the Arnundsen Basin. Below the youngest unit of 5-20 crn thick silty clays deposits of variable stratigraphies have been found, rnostly consisting of clays or silty clays. In a few instances turbidites have been observed. Benthic forarninifers have not been found in the surface sedirnents. Other fossils were extrernely rare. Bioturbation is weakly developed on all stations. Benthic anirnals seern to live only in and on the upperrnost 2 cm of the uppermost sediment layer. They cornprise amphipods (on all stations) and holothurians, bryozoans, polychaetes, and porifers at one station each. LOMONOSOV RIDGE Sediments from the Lomonosov Ridge show a variety of colors and textures. Following smear slide analyses they are composed mostly of clay minerals and quartz with mica and feldspars, especially in the siltier and sandier parts. Volcanic glass, microcrystalline carbonate, opaque minerals and green amphibole are occasional accessories. The sediments from the Lomonosov Ridge show a noticeable difference from sediments collected from the surrounding basins. Lomonosov Ridge sediments are richer in silt and sand than basin sediments. Occasional turbidites occur in ridge sediments but these must be of entirely local origin. The ridge sediments include frequent layers of "cottage cheese" texture made up of what appear to be small, angular mud clasts of a variety of colors.
Resumo:
O objetivo deste trabalho foi avaliar as características físicas e químicas de queijo Serra da Estrela de pasta semi mole e correlacionar estes resultados com os resultados da análise sensorial. Foram alvo de estudo 29 amostras de queijo Serra da Estrela produzidas com 6 ecótipos de cardo diferentes. Os queijos foram produzidos em várias queijarias da região demarcada para a produção do queijo Serra da Estrela, mais propriamente dos concelhos de Penalva do Castelo, Oliveira do Hospital e Fornos de Algodres. Procedeu-se à avaliação das propriedades químicas como a humidade, o pH, cloretos, cinzas e proteínas, de propriedades físicas, como a textura e a cor e uma avaliação sensorial. Dos resultados obtidos foi possível verificar que os valores da humidade variaram entre 34, 9% e 49,8%. As cinzas e a proteína encontram-se abaixo dos valores na literatura (3,4%–5,5% e 13,0%–21,9%, respetivamente). Os cloretos variaram entre 1,1% e 3,0% e o pH entre 4,8 e 5,7. Verificou-se que com mais dias de maturação, e portanto menor humidade, as amostras apresentam, maior firmeza, menos adesividade e menos pegamento da pasta. Os valores da dureza da casca e da pasta variam entre 1,56N e 9,40N e 0,4 N e 3,4 N, respetivamente. A adesividade é bastante elevada (de -26,29 N.sec a -2,21 N.sec), o que traduz o caráter amanteigado destes queijos. Nas coordenadas de cor os valores de L* variaram entre 53,57 a 64,34, os de a* entre -4,53 e 1,29 e os de b* entre 15,56 e 29,03, revelando uma cor amarelada. Os resultados da análise sensorial não apresentam grande variabilidade entre os diferentes ecótipos e verificou-se que, em geral, as análises instrumentais realizadas acabaram por confirmar a percepção dos provadores.
Resumo:
The objective of this study was to evaluate the chemical, color, textural, and sensorial characteristics of Serra da Estrela cheese and also to identity the factors affecting these properties, namely thistle ecotype, place of production, dairy and maturation. The results demon- strated that the cheeses lost weight mostly during the first stage of maturation, which was negatively correlated with moisture content, being this also observed for fat and protein contents. During maturation the cheeses became darker and with a yellowish coloration. A strong corre- lation was found between ash and chlorides contents, being the last directly related to the added salt in the manufacturing process. The flesh firmness showed a strong positive correlation with the rind harness and the firmness of inner paste. Stickiness was strongly related with all the other textural properties being indicative of the creamy nature of the paste. Adhesiveness was posi- tively correlated with moisture content and negatively correlated with maturation time. The trained panelists liked the cheeses, giving high overall assessment scores, but these were not significantly correlated with the physicochemical properties. The salt differences between cheeses were not evident for the panelists, which was corroborated by the absence of correlation between the perception of saltiness and the analyzed chlorides con- tents. The Factorial Analysis of the chemical and physical properties evidenced that they could be explained by two factors, one associated to the texture and the color and the other associated with the chemical properties. Finally, there was a clear influence of the thistle ecotype, place of production and dairy factors in the analyzed properties.
Resumo:
The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..
Resumo:
The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Increased plasmin and plasminogen levels and elevated somatic cell counts (SCC) and polymorphonuclear leucocyte levels (PMN) were evident in late lactation milk. Compositional changes in these milks were associated with increased SCC. The quality of late lactation milks was related to nutritional status of herds, with milks from herds on a high plane of nutrition having composition and clotting properties similar to, or superior to, early-mid lactation milks. Nutritionally-deficient cows had elevated numbers of polymorphonuclear leucocytes (PMNs) in their milk, elevated plasmin levels and increased overall proteolytic activity. The dominant effect of plasmin on proteolysis in milks of low SCC was established. When present in elevated numbers, somatic cells and PMNs in particular had a more significant influence on the proteolysis of both raw and pasteurised milks than plasmin. PMN protease action on the caseins showed proteolysis products of two specific enzymes, cathepsin B and elastase, which were also shown in high SCC milk. Crude extracts of somatic cells had a high specificity on αs1-casein. Cheeses made from late lactation milks had increased breakdown of αs1-casein, suggestive of the action of somatic cell proteinases, which may be linked to textural defects in cheese. Late lactation cheeses also showed decreased production of small peptides and amino acids, the reason for which is unknown. Plasmin, which is elevated in activity in late lactation milk, accelerated the ripening of Gouda-type cheese, but was not associated with defects of texture or flavour. The retention of somatic cell enzymes in cheese curd was confirmed, and a potential role in production of bitter peptides identified. Cheeses made from milks containing high levels of PMNs had accelerated αs1-casein breakdown relative to cheeses made from low PMN milk of the same total SCC, consistent with the demonstrated action of PMN proteinases. The two types of cheese were determined significantly different by blind triangle testing.
Resumo:
The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.
Resumo:
The texture and microstructure of white-brined cheeses similar to urfa (a traditional Turkish cheese) were studied. One batch of cheeses was made in the traditional manner and one batch was made from ultrafiltered (UF) milk. Samples from each batch were either ripened in brine after production or scalded in whey for 3 min at 90degreesC prior to ripening. The results showed only marginal differences in the ripening profiles of both batches of unscalded cheeses, but scalding slowed down the extent of proteolysis in both batches. The scalded cheeses had a firmer texture than the unscalded ones, and the unscalded UF cheese had a more 'springy' body than the unscalded traditional cheese. Overall, scalding resulted in a more homogeneous structure, but the unscalded UF cheese had a close texture that resembled the scalded samples. It was concluded that, with respect to texture and structure, cheeses made with UF milk do not need to be scalded after production.