952 resultados para Cheese rheology
Resumo:
The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.
Resumo:
The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.
Resumo:
Dhaka cheese is a semihard artisanal variety originating from Bangladesh where manual curd kneading is a normal stage in its manufacture. Dhaka cheeses were produced with different degrees of curd kneading to quantify the curd manipulation process in terms of pressure and to standardise the length of operation. The effect of manipulation on the composition, rheology, texture and microstructure of fresh cheese was also studied. Manipulation had significant effects (P < 0.05–0.001) on most of the parameters studied. One minute of curd manipulation was found to be sufficient for Dhaka cheesemaking
Resumo:
The role of different types of emulsifying saltssodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)on microstructure and rheology of requeijao cremoso processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G/G). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.
Resumo:
The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.
Resumo:
The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.
Resumo:
A mathematical model is developed for the ripening of cheese. Such models may assist predicting final cheese quality using measured initial composition. The main constituent chemical reactions are described with ordinary differential equations. Numerical solutions to the model equations are found using Matlab. Unknown parameter values have been fitted using experimental data available in the literature. The results from the numerical fitting are in good agreement with the data. Statistical analysis is performed on near infrared data provided to the MISG. However, due to the inhomogeneity and limited nature of the data, not many conclusions can be drawn from the analysis. A simple model of the potential changes in acidity of cheese is also considered. The results from this model are consistent with cheese manufacturing knowledge, in that the pH of cheddar cheese does not significantly change during ripening.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.