909 resultados para Characterisation
Resumo:
The occurrence and levels of airborne polycyclic aromatic hydrocarbons and volatile organic compounds in selected non-industrial environments in Brisbane have been investigated as part of an integrated indoor air quality assessment program. The most abundant and most frequently encountered compounds include, nonanal, decanal, texanol, phenol, 2-ethyl-1-hexanol, ethanal, naphthalene, 2,6-tert-butyl-4-methyl-phenol (BHT), salicylaldehyde, toluene, hexanal, benzaldehyde, styrene, ethyl benzene, o-, m- and pxylenes, benzene, n-butanol, 1,2-propandiol, and n-butylacetate. Many of the 64 compounds usually included in the European Collaborative Action method of TVOC analysis were below detection limits in the samples analysed. In order to extract maximum amount of information from the data collected, multivariate data projection methods have been employed. The implications of the information extracted on source identification and exposure control are discussed.
Resumo:
Cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through simple soft chemistry. The cobalt hydroxide displays hexagonal morphology with clear edges 20 nm long. This morphology and nanosize is retained through to cobalt oxide Co3O4 through a topotactical relationship. Cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through oxidation and low temperature calcination from the as-prepared cobalt hydroxide. Characterisation of these cobalt-based nanomaterials were fully developed, including X-ray diffraction, transmission electron microscopy combined with selected area electron diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Bonding of the divalent cobalt hydroxide from the oxyhydroxide and oxides by studying their high resolution XPS spectra for Co 2p3/2 and O 1s. Raman spectroscopy of the as-prepared Co(OH)2, CoO(OH) and Co3O4 nanomaterials characterised each material. The thermal stability of the materials Co(OH)2 and CoO(OH) were established. This research has developed methodology for the synthesis of cobalt oxide and cobalt oxyhydroxide nanodiscs at low temperatures.
Resumo:
Fours sets of PM10 samples were collected in three sites in SEQ from December 2002 to August 2004. Three of these sets of samples were collected by QLD EPA as a part of their regular air monitoring program at Woolloongabba, Rocklea and Eagle Farm. Half of the samples were used in this study for the analysis of water-soluble ions, which are Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, F-, Br-, NO2 -, PO4 -3 and the other half was retained by QLD EPA. The fourth set of samples was collected at Rocklea, specifically for this study. A quarter of the samples obtained from this set of samples were used to analyse water-soluble ions; a quarter of the sample was used to analyse Pb, Cu, Al, Fe, Mn and Zn; and the rests were used to analyse US EPA 16 priority PAHs. The water-soluble ions were extracted ultrasonically with water and the major watersoluble anions as well as NH4 + were analysed using IC. Na+, K+, Mg2+, Ca2+ Pb, Cu, Al, Fe, Mn and Zn were analysed using ICP-AES while PAHs were extracted by acetonitrile and analysed using HPLC. Of the analysed water-soluble ions, Cl-, NO3 -, SO4 2-, Na+, K+, Mg2+ and Ca2+ were high in concentration and determined in all the samples. F-, Br-, NO2 -, PO4 -3 and NH4 + ions were lower in concentration and determined only in some samples. Na+ and Cl- were high in all samples indicating the importance of a marine source. Principal Component Analysis (PCA) was used to examine the temporal variations of the water-soluble ions at the three sites. The results indicated that there was no major difference between the three sites. However, comparing the average concentrations of ions and Cl-/Na+ it was concluded that Woolloongabba had more marine influence than the other sites. Al, Fe and Zn were detected in all samples. Al and Fe were high in all samples indicating the significance of a source of crustal matter. Cu, Mn and Pb were in low concentrations and were determined only in some samples. The lower Pb concentrations observed in the study than in previous studies indicate that the phasing-out of leaded petrol had an appreciable impact on Pb levels in SEQ. This study reports for the first time, simultaneous data on the water-soluble, metal ion and PAH levels of PM10 aerosols in Brisbane, and provides information on the most likely sources of these chemical species. Such information can be used alongside those that already exist to formulate PM10 pollution reduction strategies for SEQ in order to protect the community from the adverse effects of PM pollution.
Resumo:
The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.
Resumo:
Osteophytes form through the process of chondroid metamorphosis of fibrous tissue followed by endochondral ossification. Osteophytes have been found to consist of three different mesenchymal tissue regions including endochondral bone formation within cartilage residues, intra-membranous bone formation within fibrous tissue and bone formation within bone marrow spaces. All these features provide evidence of mesenchymal stem cells (MSC) involvement in osteophyte formation; nevertheless, it remains to be characterised. MSC from numerous mesenchymal tissues have been isolated but bone marrow remains the “ideal” due to the ease of ex vivo expansion and multilineage potential. However, the bone marrow stroma has a relatively low number of MSC, something that necessitates the need for long-term culture and extensive population doublings in order to obtain a sufficient number of cells for therapeutic applications. MSC in vitro have limited proliferative capacity and extensive passaging compromises differentiation potential. To overcome this barrier, tissue derived MSC are of strong interest for extensive study and characterisation, with a focus on their potential application in therapeutic tissue regeneration. To date, no MSC type cell has been isolated from osteophyte tissue, despite this tissue exhibiting all the hallmark features of a regenerative tissue. Therefore, this study aimed to isolate and characterise cells from osteophyte tissues in relation to their phenotype, differentiation potential, immuno-modulatory properties, proliferation, cellular ageing, longevity and chondrogenesis in in vitro defect model in comparison to patient matched bone marrow stromal cells (bMSC). Osteophyte derived cells were isolated from osteophyte tissue samples collected during knee replacement surgery. These cells were characterised by the expression of cell surface antigens, differentiation potential into mesenchymal lineages, growth kinetics and modulation of allo-immune responses. Multipotential stem cells were identified from all osteophyte samples namely osteophyte derived mesenchymal stem cells (oMSC). Extensively expanded cell cultures (passage 4 and 9 respectively) were used to confirm cytogenetic stability and study signs of cellular aging, telomere length and telomerase activity. Cultured cells at passage 4 were used to determine 84 pathway focused stem cell related gene expression profile. Micro mass pellets were cultured in chondrogenic differentiation media for 21 days for phenotypic and chondrogenic related gene expression. Secondly, cell pellets differentiated overnight were placed into articular cartilage defects and cultured for further 21 days in control medium and chondrogenic medium to study chondrogenesis and cell behaviour. The surface antigen expression of oMSC was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing those related to adhesion (CD29, CD166, CD44) and stem cells (CD90, CD105, CD73). The proliferation capacity of oMSC in culture was superior to that of bMSC, and they readily differentiated into tissues of the mesenchymal lineages. oMSC also demonstrated the ability to suppress allogeneic T-cell proliferation, which was associated with the expression of tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO). Cellular aging was more prominent in late passage bMSC than in oMSC. oMSC had longer telomere length in late passages compared with bMSC, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSC and not in bMSC. In osteophyte tissues telomerase positive cells were found to be located peri vascularly and were Stro-1 positive. Eighty-four pathway-focused genes were investigated and only five genes (APC, CCND2, GJB2, NCAM and BMP2) were differentially expressed between bMSC and oMSC. Chondrogenically induced micro mass pellets of oMSC showed higher staining intensity for proteoglycans, aggrecan and collagen II. Differential expression of chondrogenic related genes showed up regulation of Aggrecan and Sox 9 in oMSC and collagen II in bMSC. The in vitro defect models of oMSC in control medium showed rounded and aggregated cells staining positively for proteoglycan and presence of some extracellular matrix. In contrast, defects with bMSC showed fragmentation and loss of cells, fibroblast-like cell morphology staining positively for proteoglycans. For defects maintained in chondrogenic medium, rounded, aggregated and proteoglycan positive cells were found in both oMSC and bMSC cultures. Extracellular matrix and cellular integration into newly formed matrix was evident only in oMSC defects. For analysis of chondrocyte hypertrophy, strong expression of type X collagen could be noticed in the pellet cultures and transplanted bMSC. In summary, this study demonstrated that osteophyte derived cells had similar properties to mesenchymal stem cells in the expression of antigen phenotype, differential potential and suppression of allo-immune response. Furthermore, when compared to bMSC, oMSC maintained a higher proliferative capacity due to a retained level of telomerase activity in vitro, which may account for the relatively longer telomeres delaying growth arrest by replicative senescence compared with bMSC. oMSC behaviour in defects supported chondrogenesis which implies that cells derived from regenerative tissue can be an alternative source of stem cells and have a potential clinical application for therapeutic stem cell based tissue regeneration.