48 resultados para Chaoborus
Resumo:
In lake ecosystems, both fish and invertebrate predators have dramatic effects on their prey communities. Fish predation selects large cladocerans while invertebrate predators prefer prey of smaller size. Since invertebrate predators are the preferred food items for fish, their occurrence at high densities is often connected with the absence or low number of fish. It is generally believed that invertebrate predators can play a significant role only if the density of planktivorous fish is low. However, in eutrophic clay-turbid Lake Hiidenvesi (southern Finland), a dense population of predatory Chaoborus flavicans larvae coexists with an abundant fish population. The population covers the stratifying area of the lake and attains a maximum population density of 23000 ind. m-2. This thesis aims to clarify the effects of Chaoborus flavicans on the zooplankton community and the environmental factors facilitating the coexistence of fish and invertebrate predators. In the stratifying area of Lake Hiidenvesi, the seasonal succession of cladocerans was exceptional. The spring biomass peak of cladocerans was missing and the highest biomass occurred in midsummer. In early summer, the consumption rate by chaoborids clearly exceeded the production rate of cladocerans and each year the biomass peak of cladocerans coincided with the minimum chaoborid density. In contrast, consumption by fish was very low and each study year cladocerans attained maximum biomass simultaneously with the highest consumption by smelt (Osmerus eperlanus). The results indicated that Chaoborus flavicans was the main predator of cladocerans in the stratifying area of Lake Hiidenvesi. The clay turbidity strongly contributed to the coexistence of chaoborids and smelt at high densities. Turbidity exceeding 30 NTU combined with light intensity below 0.1 μE m-2 s-1provides an efficient daytime refuge for chaoborids, but turbidity alone is not an adequate refuge unless combined with low light intensity. In the non-stratifying shallow basins of Lake Hiidenvesi, light intensity exceeds this level during summer days at the bottom of the lake, preventing Chaoborus forming a dense population in the shallow parts of the lake. Chaoborus can be successful particularly in deep, clay-turbid lakes where they can remain high in the water column close to their epilimnetic prey. Suspended clay alters the trophic interactions by weakening the link between fish and Chaoborus, which in turn strengthens the effect of Chaoborus predation on crustacean zooplankton. Since food web management largely relies on manipulations of fish stocks and the cascading effects of such actions, the validity of the method in deep clay-turbid lakes may be questioned.
Resumo:
The Goggausee, a small, shallow, meromictic lake(700m long, 150m wide, max. depth=12m, mean depth=6m), was the site of a week long study (19-26 May 1974) of the limnology department of the University of Vienna. The study comprised pollen analysis and palaeolimnological studies on the one hand, as well as a stock- taking of physiochemical factors, primary production, bacteria, zooplankton, zoo benthos and fish on the other. This paper studies the zooplankton of the lake. The Goggausee is a meromictic lake, with its anoxic deep water, that restricts the vertical distribution of most zooplankton. The aim of the study was to pursue the vertical distribution of the rotifers and Crustacea. Density of individuals, biomass, percentages of zooplankton together and crustaceans and rotifers as groups. Special consideration is given to the the Dipteran Chaoborus flavicans.
Resumo:
The Goggausee, in spite of its modest depth (Zmax = 12 metres), shows meromictic properties: autumn and spring circulation extend only to a depth of 8 metres. The water layers below about 10 metres are constantly oxygen-free, the critical zone with at least intermittent oxygen loss lies at a depth of between 6 and 10 metres. A limnological excursion in May 1974 offered an opportunity to investigate the daily vertical migration of the species Chaoborus flavicans with reference to its food supply of zooplankton as well as the chance to carry out some preliminary experiments on its rate of food intake. Among the studied features were the planktonic depth distribution of Chaoborus flavicans and the food intake of Chaoborus larvae under experimental conditions.
Resumo:
Population dynamics of Chaoborus flavicans larvae of various instars was studied from November 1986 to December 1987 in a eutrophic, fish-free pond, Japan. First and 2nd instar larvae were observed from late April to late October, indicating a reproductive period of about half a year. C. flavicans overwintered in the 4th instar larvae. In water column samples, total density of all instars was 680-23 680 m(-2), and pupal density 0-2 600 m(-2); larvae of the Ist, 2nd, and 3rd instars showed 5-6 density peaks in 1987, suggesting that 5-6 generations occur during a year (peaks of the 4th instar larvae were not clear, probably due to their longer development than those of younger instars). In sediment samples, no Ist and 2nd instar larvae were found, 3rd instar larvae were found occasionally but density of the 4th instar larvae was 280-18 600 m(-2), and pupal density varied between 0-502 m(-2). Fouth instar larvae accumulated in sediment in the cold season and in the water column in the warm season; high temperature and low oxygen concentration were the most important factors limiting the distribution of larvae in the sediment in summer in the NIES pond. The dry weight of total C. flavicans larvae was 0.08-4.2 g m(-2) in sediment samples and 24-599 mu g l(-1) (0.10-2.40 g m(-2)) in water column samples. Comparisons of maximum densities in the NIES pond in different years and in waters of different trophic status show that density is generally higher in eutrophic than in oligotrophic habitats.
Resumo:
In aquatic systems, the ability of both the predator and prey to detect each other may be impaired by turbidity. This could lead to significant changes in the trophic interactions in the food web of lakes. Most fish use their vision for predation and the location of prey can be highly influenced by light level and clarity of the water environment. Turbidity is an optical property of water that causes light to be scattered and absorbed by particles and molecules. Turbidity is highly variable in lakes, due to seasonal changes in suspended sediments, algal blooms and wind-driven suspension of sediments especially in shallow waters. There is evidence that human activity has increased erosion leading to increased turbidity in aquatic systems. Turbidity could also play a significant role in distribution of fish. Turbidity could act as a cover for small fish and reduce predation risk. Diel horizontal migration by fish is common in shallow lakes and is considered as consequences of either optimal foraging behaviour for food or as a trade-off between foraging and predator avoidance. In turbid lakes, diel horizontal migration patterns could differ since turbidity can act as a refuge itself and affect the predator-prey interactions. Laboratory experiments were conducted with perch (Perca fluviatilis L.) and white bream (Abramis björkna (L.)) to clarify the effects of turbidity on their feeding. Additionally to clarify the effects of turbidity on predator preying on different types of prey, pikeperch larvae (Sander lucioperca (L.)), Daphnia pulex (Leydig), Sida crystallina (O.F. Müller), and Chaoborus flavicans (Meigen) were used as prey in different experiments. To clarify the role of turbidity in distribution and diel horizontal migration of perch, roach (Rutilus rutilus (L.)) and white bream, field studies were conducted in shallow turbid lakes. A clear and a turbid shallow lake were compared to investigate distribution of perch and roach in these two lakes in a 15-year study period. Feeding efficiency of perch and white bream was not significantly affected with increasing clay turbidity up to 50 NTU. The perch experiments with pikeperch larvae suggested that clay turbidity could act as a refuge especially at turbidity levels higher than 50 NTU. Perch experiments with different prey types suggested that pikeperch larvae probably use turbidity as a refuge better compared to Daphnia. Increase in turbidity probably has stronger affect on perch predating on plant-attached prey. The main findings of the thesis show that turbidity can play a significant role in distribution of fish. Perch and roach could use turbidity as refuge when macrophytes disappear while small perch may also use high turbidity as refuge when macrophytes are present. Floating-leaved macrophytes are probably good refuges for small fish in clay-turbid lakes and provide a certain level of turbidity and not too complex structure for refuge. The results give light to the predator-prey interactions in turbid environments. Turbidity of water should be taken in to account when studying the diel horizontal migrations and distribution of fish in shallow lakes.
Resumo:
A lakewide hydroacoustic research programme was designed in the Ugandan waters of Lake Victoria in order to ascertain the status of fish stocks. Data obtained from the hydroacoustic surveys were complemented with by catch data from multi mesh gillnets and frame trawls to validate acoustic estimates. Fish were distributed over the whole survey area, though the densities and species composition varied from place to place. Echo traces showed the fish formed schools during daytime and became more dispersed towards evening. Approximately equivalent indices of abundance were estimated for Rastrineobola argentea and Haplocromines. The distribution of the freshwater prawn, Caridina nilotica and the lakefly Chaoborus sp. was patchy. Dense swarms of Chaoborus larvae were observed to disperse from the lake bottom as the night approached thus assuring echo-traces formed by fish on the echogram and making their interpretation difficult. Caridina nilotica were observed to form dense echo-traces at the thermocline
Resumo:
Many haplochromine cichlids coexisted in Lake Victoria before the upsurge of Nile perch. The introduction of the Nile perch led to depletion of many haplochromines and other fish species in Lake Victoria. The impact of Nile perch predation on haplochromines differed for different haplochromine trophic groups. Yssichromis fusiformis (G) and Yssichromis laparogramma (G) are among the species that have survived in the lake. Yssichromis spp. was studied with the aim of determining their trophic role, food and feeding habits. Samples were collected from Bugaia, Buvuma channel and Napoleon Gulf in the northern part of Lake Victoria. The food of Yssichromis spp. varied with size of fish. Both Y fusiformis and Y laparogramma fed on Copepods, Cladocerans, Chaoborus and Chironomids. Juvenile Yssichromis spp. fed exclusively on zooplankton comprising Cyclopoid copepods, Calanoid copepods and Cladocera. The relative importance of Chironomid larvae and Calanoid copepods was higher in Bugaia than in Buvuma channel while Cyclopoid copepods and Chironomid pupae were relatively less important in Bugaia. The main food items that Yssichromis spp. fed on in Buvuma channel were Chironomid larvae Cyclopoid copepods, Cladocerans and Calanoid copepods. In Napoleon Gulf, fish caught from commercial fishery of Rastrineobola argentea (P) had fed on Chaoborus and Chironomids. Overall, Yssichromis spp. fed on more zooplankton in Buvuma than in Bugaia. Yssichromis spp. and R. argentea are presently the most abundant zooplanktivores in the northern part of Lake Victoria and are playing an important trophic role as major consumers of zooplankton and insect larvae in the foodweb of the lake ecosystem. Yssichromis spp. are bridging the transfer of energy from the lower to the higher trophic levels as secondary consumers. The fishery is still not contributing to the direct conversion of the primary products, the phytoplankton and detritus that were efficiently utilised by the diverse haplochromine trophic groups that existed before the Nile perch boom.
Resumo:
The community structure of zooplankton was studied in a eutrophic, fishless Japanese pond. The ecosystem was dominated by a dinoflagellate, Ceratium hirundinella, two filter-feeding cladocerans, Daphnia rosea and Ceriodaphnia reticulata, and an invertebrate predator, the dipteran Chaoborus flavicans. The midsummer zooplankton community showed a large change in species composition (the Daphnia population crashed) when a heavy Ceratium bloom occurred. It is shown that (i) the rapid density decline of D.rosea in mid-May was mainly caused by a shortage of edible phytoplankton, which was facilitated by the rapid increase in C.hirundinella abundance; (ii) the low density of D.rosea in June-July was considered to be mainly caused by the blooming of Ceratium hirundinella (which may inhibit the feeding process of D.rosea), while predation by C.flavicans larvae, the changing temperature, the interspecific competition and the scarcity of edible algae were not judged to be important; (iii) the high summer biomass of the planktonic C.flavicans larvae was maintained by the bloom of C.hirundinella, because >90% of the crop contents of C.flavicans larvae were C.hirundinella during this period. The present study indicates that the large-sized cells or colonies of phytoplankton are not only inedible by most cladocerans, but the selective effect of the blooming of these algae can also influence the composition and dominance of the zooplankton community, especially for the filter-feeding Cladocera, in a similar way as the selective predation by planktivorous fish. The large-sized phytoplankton can also be an important alternative food for ominivorous invertebrate predators such as Chaoborus larvae, and thus may affect the interactions between these predators and their zooplanktonic prey. In this way, such phytoplankton may play a very important role in regulating the dynamics of the aquatic food web, and become a driving force in shaping the community structure of zooplankton.
Resumo:
Invertebrate predation on zooplankton was investigated in mesocosms in the shallow tropical Lake Monte Alegre, Sauo Paulo State, Brazil, in the summer of 1999. Two treatments were applied: one with natural densities of prey and the predators Chaoborus brasiliensis and the water mite Krendowskia sp. (Pr+), and another without predators (Pr-). Three enclosures (volume: 6.6 m(3) of water per enclosure) per treatment were installed in the sediment of the deepest area of the lake (5.0 m). At the beginning, Chaoborus larvae were present in Pr- enclosures, because of technical difficulties in preventing their entrance, but they virtually disappeared in the course of the experiment. Water mites were almost absent in Pr- enclosures. Chaoborus predation negatively influenced the Daphnia gessneri population, but not the populations of the copepods Tropocyclops prasinus and Thermocyclops decipiens and the rotifers Keratella spp. Death rates of Daphnia were generally significantly higher in the Pr+ treatment; Daphnia densities increased after the disappearance of Chaoborus in Pr-. Copepod losses to predation in the experiment may be compensated by higher fecundity, shorter egg development time, and lower pressure on egg-bearing females, resulting in a lower susceptibility to Chaoborus predation. The predation impact of water mite on microcrustaceans and rotifers in the experiment was negligible.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study was focused on the predation upon microcrustaceans by an invertebrate predator (chaoborid larvae), and vertebrate predators (fish), in two small reservoirs in southeastern Brazil, with and without macrophytes, in two climatic periods (dry and rainy seasons). Chaoborus larvae were sampled in the limnetic zone, as they are scarce in the littoral, and fish in both limnetic and littoral zones. Their diets were evaluated by the analysis of the crop (chaoborid) or stomach contents (fish). Chaoborid larvae consumed the dinoflagellate Peridinium sp. or other algae, rotifers, and planktonic microcrustaceans. The fish species that included microcrustaceans in their diets were juveniles caught in the littoral. Aquatic insects, plant fragments, and detritus were their major dietary items, microcrustaceans representing a minor item. Planktonic copepods contributed more to the diet of chaoborid larvae than planktonic cladocerans. Fish preyed on planktonic microcrustaceans, as well as on benthic and macrophyte-associated species. Microcrustaceans were not heavily preyed on by chaoborid larvae and fish in both reservoirs.
Resumo:
This study was focused on the predation upon microcrustaceans by an invertebrate predator (chaoborid larvae), and vertebrate predators (fish), in two small reservoirs in southeastern Brazil, with and without macrophytes, in two climatic periods (dry and rainy seasons). Chaoborus larvae were sampled in the limnetic zone, as they are scarce in the littoral, and fish in both limnetic and littoral zones. Their diets were evaluated by the analysis of the crop (chaoborid) or stomach contents (fish). Chaoborid larvae consumed the dinoflagellate Peridinium sp. or other algae, rotifers, and planktonic microcrustaceans. The fish species that included microcrustaceans in their diets were juveniles caught in the littoral. Aquatic insects, plant fragments, and detritus were their major dietary items, microcrustaceans representing a minor item. Planktonic copepods contributed more to the diet of chaoborid larvae than planktonic cladocerans. Fish preyed on planktonic microcrustaceans, as well as on benthic and macrophyte-associated species. Microcrustaceans were not heavily preyed on by chaoborid larvae and fish in both reservoirs.
Resumo:
The discovery of a neolithic pile field in the shallow water near the eastern shore of the Degersee confirmed earlier palynological and sedimentological studies stating that early man was active in the region since more than 6000 years. The already available off-site data were freshly assessed, completed by additional data from old and new cores and the interpretations revised. A common time scale for the off-site data and the on-site data was obtained by AMS dating of terrestrial macro remains of the neolithic section of off-site core De_I+De_H. The ages can thus be parallelled with AMS ages of construction timber on-site. Pollen analyses from all cores provide a further time scale. The continuously and densely sampled pollen profile of the profundal zone embracing the entire Late glacial and Holocene serves as a reference. From the Boreal onwards the relative ages are transformed by AMS ages and varve counts into calibrated and absolute. A transect cored close to the neolithic pile field across the lake marl-platform demonstrates its geological architecture in the shallow water since the Lateglacial. Studies of the microfabric of thin sections of drilled cores and of box cores from the excavations demonstrate that neolithic settlements now at 2-3,5 m water depth had been erected on lake marl freshly fallen dry, thus indicating earlier lake levels dropped by 1.5-2 m. The neolithic section of the highly resolved off-site profile in the lake=s profundal zone has laminated and calcareous zones alternating with massive ones. Assemblages of diatoms and concentrations of trace elements changing simultaneously characterise the calcareous sections as deposits of low lake levels that lasted between some 40 and more than 300 years. The ages of discovered lake shore dwellings fall into calcareous segments with low lake levels. From the end of the Upper Atlantic period (F VII) appear Secondary Forest Cycles in the beech forest, a man-made sequence of repeated vegetational development with an identical pattern: With a decrease of beech pollen appear pollen of grasses, herbs and cultural indicators. These are suppressed by the light demanding hazel and birch, those again by ash, and finally by the shade demanding beech forming a new pollen peak. Seven main Forest Cycles are identified In the upper Neolithic period each comprising some 250, 450 or 800 years. They are subdivided into subcycles that can be broken down by very dense sampling in even shorter cycles of decadal length. Farming settlers have caused minor patchy clearances of the beech-mixed-forest with the use of fire. The phases of clearance coincide with peaks of charcoal and low stands of the lake levels. The Secondary Forest Cycles and the continuous occurrence of charcoal prove a continued occupation of the region. Together with the repeated restoration of the beech climax forest they point to pulsating occupation probably associated with dynamic demography. The synchronism of the many palynological, sedimentological and archaeological data point to an external forcing as the climate that affects comprehensively all these proxies. The fluctuations of the activity of the sun as manifested in the residual d14C go largely along with the proxies. The initial clearances at the begin of the forest cycles are linked to low lake levels and negative values of d14C that point to dry and warm phases of a more continental climate type. The subcycles exist independent from climatic changes, indicating that early man acted largely independent from external forces.