976 resultados para Cerebellar Neoplasms


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of both myc oncogenes, regulators of neural progenitor proliferation, and REST/NRSF, a transcriptional repressor of neuronal differentiation genes. Previous studies have shown that neither c-Myc nor REST/NRSF alone could cause tumor formation. To determine whether c-Myc and REST/NRSF act together to cause medulloblastomas, we used a previously established cell line derived from external granule layer stem cells transduced with activated c-myc (NSC-M). These immortalized NSCs were able to differentiate into neurons in vitro. In contrast, when the cells were engineered to express a doxycycline-regulated REST/NRSF transgene (NSC-M-R), they no longer underwent terminal neuronal differentiation in vitro. When injected into intracranial locations in mice, the NSC-M cells did not form tumors either in the cerebellum or in the cerebral cortex. In contrast, the NSC-M-R cells did produce tumors in the cerebellum, the site of human medulloblastoma formation, but not when injected into the cerebral cortex. Furthermore, the NSC-M-R tumors were blocked from terminal neuronal differentiation. In addition, countering REST/NRSF function blocked the tumorigenic potential of NSC-M-R cells. To our knowledge, this is the first study in which abnormal expression of a sequence-specific DNA-binding transcriptional repressor has been shown to contribute directly to brain tumor formation. Our findings indicate that abnormal expression of REST/NRSF and Myc in NSCs causes cerebellum-specific tumors by blocking neuronal differentiation and thus maintaining the "stemness" of these cells. Furthermore, these results suggest that such a mechanism plays a role in the formation of human medulloblastoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The joints of a humanoid robot experience disturbances of markedly different magnitudes during the course of a walking gait. Consequently, simple feedback control techniques poorly track desired joint trajectories. This paper explores the addition of a control system inspired by the architecture of the cerebellum to improve system response. This system learns to compensate the changes in load that occur during a cycle of motion. The joint compensation scheme, called Trajectory Error Learning, augments the existing feedback control loop on a humanoid robot. The results from tests on the GuRoo platform show an improvement in system response for the system when augmented with the cerebellar compensator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the economic burden of malignant neoplasms in Shandong province in order to provide scientific evidence for policy-making. Methods: The main sources for this study were the data from the third sampling survey of death cause in 2006 and cancer prevalence survey in 2007 in Shandong province. The direct medical cost was calculated based on the survey data. The indirect cost due to mortality and morbidity were estimated with human capital approach based on the data of disability-adjusted life years derived from the two surveys and gross domestic product (GDP) data. The total economic burden was the sum of direct medical cost and indirect cost. The uncertainty analysis was conducted according to the methodology in global burden of disease study. Results: The total cost of cancer in Shandong province in 2006 estimated was 18 057 million Yuan RMB (95% confidence interval:16 817 - 19 393 million), which accounted for 0. 83% of the total GDP. The direct medical cost,indirect mortality cost and indirect morbidity cost accounted for 17.28%, 78.53%, and 4.20% of total economic burden of malignant neoplasms, respectively. Liver,lung and stomach cancer were the top three tumors with heavier economic burden, with accounted for more than one half (57. 83%) of the total economic burden of all cancers. The uncertainty of total burden estimated was around ± 7%, which mainly derived from the uncertainty of indirect economic burden. Conclusion: The influence of cancers on social economy is dominated by the loss of productivity, especially by the productivity loss due to premature death. Liver, lung and stomach cancer are the major cancers for disease control and prevention in Shandong province. Abstract in Chinese 目的 评价山东省恶性肿瘤经济负担,为卫生决策提供科学依据. 方法 以2006年山东省第3次死因回顾抽样凋查资料和2007年山东省恶性肿瘤现患状况抽样调查资料为基础,测算全省直接医疗成本;采用人力资本法测算死亡间接负担和伤残间接负担;参考全球疾病负担研究的方法对测算结果的不确定性进行分析. 结果 2006年山东省因恶性肿瘤导致的总经济负担为180.57亿元(95%CI=16 817~19 393),占全省GDP总量的0.83%,其中直接医疗成本占总负担的17.28%,死亡造成的间接经济负担占78.53%,伤残所致间接经济负担占4.20%;肝癌、肺癌和胃癌为山东省经济负担最重的3种恶性肿瘤,总经济负担合计占全部恶性肿瘤的57.83%;总经济负担估计结果的不确定性范围在±7%左右,主要取决于间接经济负担的不确定性. 结论 恶性肿瘤对社会经济的影响主要通过生产力的损失产生作用,并以死亡所致生产力损失为主;肝癌、肺癌和胃癌应是山东省恶性肿瘤预防控制的重点.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To determine stage-specific and average disability weights (DWs) of malignant neoplasm and provide support and evidence for study on burden of cancer and policy development in Shandong province. Methods Health status of each cancer patient identified during the cancer prevalence survey in Shandong, 2007 was investigated. In line with the GBD methodology in estimating DWs, the disability extent of every case was classified and evaluated according to the Six-class Disability Classification version and then the stage-specific weights and average DWs with their 95 % confidence intervals were calculated, using SAS software. Results A total of 11 757 cancer cases were investigated and evaluated. DWs of specific stage of therapy, remission, metastasis and terminal of all cancers were 0.310, 0.218, 0.450 and 0.653 respectively. The average DW of all cancers was 0.317(95 % CI:0.312-0.321). Weights of different stage and different cancer varied significantly, while no significant differences were found between males and females. DWs were found higher (>0.4) for liver cancer, bone cancer, lymphoma and pancreas cancer. Lower DWs (<0.3) were found for breast cancer, cervix uteri, corpus uteri, ovarian cancer, larynx cancer, mouth and oropharynx cancer. Conclusion Stage-specific and average DWs for various cancers were estimated based on a large sample size survey. The average DWs of 0.317 for all cancers indicated that 1/3 healthy year lost for each survived life year of them. The difference of DWs between different cancer and stage provide scientific evidence for cancer prevention strategy development. Abstract in Chinese 目的 测算各种恶性肿瘤的分病程残疾权重和平均残疾权重,为山东省恶性肿瘤疾病负担研究及肿瘤防治对策制定提供参考依据. 方法 在山东省2007年恶性肿瘤现患调查中对所有恶性肿瘤患者的健康状况进行调查,参考全球疾病负担研究的方法 ,利用六级社会功能分级标准对患者残疾状况进行分级和赋值,分别计算20种恶性肿瘤的分病程残疾权重和平均残疾权重及其95%CI. 结果 共调查恶性肿瘤患者11757例,所有恶性肿瘤治疗期、恢复期、转移期和晚期的残疾权重分别为0.310、0.218、0.450和0.653,平均残疾权重为0.317(95%CI:0.312~0.321).不同恶性肿瘤和不同病程阶段的残疾权重差别显著,性别间差异无统计学意义.肝癌、骨癌、淋巴瘤和胰腺癌平均残疾权重较高(>0.4),乳腺癌、子宫体癌、子宫颈癌、卵巢癌、喉癌和口咽部癌症相对较低(<0.3). 结论 山东省恶性肿瘤平均残疾权重为0.317,即恶性肿瘤患者每存活1年平均损失近1/3个健康生命年;不同恶性肿瘤和不同病程阶段的残疾权重差别为肿瘤防治对策的制定具有重要意义.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the burden of malignant neoplasms in Shandong Province in order to provide scientific evidence for policy-making. Methods: The main data for this study were from Shandong third cause of death sampling survey in 2006 and Shandong 2007 cancer prevalence survey. YLLs, YLDs, DALYs and disability weights of each type of cancers were calculated according to the global burdens of disease (GBD) methodology. The direct method was used to estimate YLDs. The uncertainty analysis was conducted following the methodology in GBD study. Results: The total cancers burden in Shandong population was 1 383 thousands DALYs. Lung cancer, liver cancer, stomach cancer and esophagus cancer were the top four cancers with the highest health burden. The burden of the four major cancers together accounted for 71.45% of the total burden of all cancers. 95% of the total burden of malignant tumors was caused by premature death, and only 5.26% of the total cancer burden was due to disability. The uncertainty of total burden estimate was around±11%, the uncertainty of YLDs was bigger than that of YLLs. Conclusion: The health burden due to cancers in Shandong population is heavier than that of the national average level. Liver cancer, lung cancer and stomach cancer should be the major cancers for disease control and prevention in Shandong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological data link adolescent cannabis use to psychosis and schizophrenia, but its contribution to schizophrenia neuropathology remains controversial. First-episode schizophrenia (FES) patients show regional cerebral grey- and white-matter changes as well as a distinct pattern of regional grey-matter loss in the vermis of the cerebellum. The cerebellum possesses a high density of cannabinoid type 1 receptors involved in the neuronal diversification of the developing brain. Cannabis abuse may interfere with this process during adolescent brain maturation leading to ‘schizophrenia-like’ cerebellar pathology. Magnetic resonance imaging and cortical pattern matching techniques were used to investigate cerebellar grey and white matter in FES patients with and without a history of cannabis use and non-psychiatric cannabis users. In the latter group we found lifetime dose-dependent regional reduction of grey matter in the right cerebellar lobules and a tendency for more profound grey-matter reduction in lobule III with younger age at onset of cannabis use. The overall regional grey-matter differences in cannabis users were within the normal variability of grey-matter distribution. By contrast, FES subjects had lower total cerebellar grey-matter : total cerebellar volume ratio and marked grey-matter loss in the vermis, pedunculi, flocculi and lobules compared to pair-wise matched healthy control subjects. This pattern and degree of grey-matter loss did not differ from age-matched FES subjects with comorbid cannabis use. Our findings indicate small dose-dependent effects of juvenile cannabis use on cerebellar neuropathology but no evidence of an additional effect of cannabis use on FES cerebellar grey-matter pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebellar dysfunction has been proposed to lead to “cognitive dysmetria” in schizophrenia via the cortico-cerebellar-thalamic-cortical circuit, contributing to a range of cognitive and clinical symptoms of the disorder. Here we investigated total cerebellar grey and white matter volumes and cerebellar regional grey matter abnormalities in 13 remitted first-episode schizophrenia patients with less than 2 years’ duration of illness. Patient data were compared to 13 pair-wise age, gender, and handedness-matched healthy volunteers using cortical pattern averaging on high-resolution magnetic resonance images. Total cerebellar volume and total grey matter volumes in first-episode schizophrenia patients did not differ from healthy control subjects, but total cerebellar white matter was increased and total grey to white matter ratios were reduced in patients. Four clusters of cerebellar grey matter reduction were identified: (i) in superior vermis; (ii) in the left lobuli VI; (iii) in right-inferior lobule IX, extending into left lobule IX; and (iv) bilaterally in the areas of lobuli III, peduncle and left flocculus. Grey matter deficits were particularly prominent in right lobuli III and IX, left flocculus and bilateral pedunculi. These cerebellar areas have been implicated in attention control, emotional regulation, social functioning, initiation of smooth pursuit eye movements, eye-blink conditioning, language processing, verbal memory, executive function and the processing of spatial and emotional information. Consistent with common clinical, cognitive, and pathophysiological signs of established illness, our findings demonstrate cerebellar pathology as early as in first-episode schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past several years, evidence has accumulated showing that the cerebellum plays a significant role in cognitive function. Here we show, in a large genetically informative twin sample (n= 430; aged 16-30. years), that the cerebellum is strongly, and reliably (n=30 rescans), activated during an n-back working memory task, particularly lobules I-IV, VIIa Crus I and II, IX and the vermis. Monozygotic twin correlations for cerebellar activation were generally much larger than dizygotic twin correlations, consistent with genetic influences. Structural equation models showed that up to 65% of the variance in cerebellar activation during working memory is genetic (averaging 34% across significant voxels), most prominently in the lobules VI, and VIIa Crus I, with the remaining variance explained by unique/unshared environmental factors. Heritability estimates for brain activation in the cerebellum agree with those found for working memory activation in the cerebral cortex, even though cerebellar cyto-architecture differs substantially. Phenotypic correlations between BOLD percent signal change in cerebrum and cerebellum were low, and bivariate modeling indicated that genetic influences on the cerebellum are at least partly specific to the cerebellum. Activation on the voxel-level correlated very weakly with cerebellar gray matter volume, suggesting specific genetic influences on the BOLD signal. Heritable signals identified here should facilitate discovery of genetic polymorphisms influencing cerebellar function through genome-wide association studies, to elucidate the genetic liability to brain disorders affecting the cerebellum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders whose etiology and molecular pathogenesis are poorly understood. During the past decade, enormous developments in microarray technology and bioinformatics methods have made it possible to mine novel molecular alterations in a large number of malignancies, including MPN and MDS, which has facilitated the detection of new prognostic, predictive and therapeutic biomarkers for disease stratification. By applying novel microarray techniques, we profiled copy number alterations and microRNA (miRNA) expression changes in bone marrow aspirate and blood samples. In addition, we set up and validated an miRNA expression test for bone marrow core biopsies in order to utilize the large archive material available in many laboratories. We also tested JAK2 mutation status and compare it with the in vitro growth pattern of hematologic progenitors cells. In the study focusing on 100 MPN cases, we detected a Janus kinase 2 (JAK2) mutation in 71 cases. We observed spontaneous erythroid colony growth in all mutation-positive cases in addition to nine mutation negative cases. Interestingly, seven JAK2V167F negative ET cases showed spontaneous megakaryocyte colony formation, one case of which also harbored a myeloproliferative leukemia virus oncogene (MPL) mutation. We studied copy number alterations in 35 MPN and 37 MDS cases by using oligonucleotide-based array comparative hybridization (array CGH). Only one essential thrombocythemia (ET) case presented copy number alterations in chromosomes 1q and 13q. In contrast, MDS cases were characterized by numerous novel cryptic chromosomal aberrations with the most common copy number losses at 5q21.3q33.1 and 7q22.1q33, while the most common copy number gain was trisomy 8. As for the study of the bone marrow core biopsy samples, we showed that even though these samples were embedded in paraffin and underwent decalcification, they were reliable sources of miRNA and suitable for array expression analysis. Further, when studying the miRNA expression profiles of the 19 MDS cases, we found that, compared to controls, two miRNAs (one human Epstein-Barr virus (miR-BART13) miRNA and one human (has-miR-671-5p) miRNA) were downregulated, whereas two other miRNAs (hsa-miR-720 and hsa-miR-21) were upregulated. However, we could find no correlation between copy number alterations and microRNA expression when integrating these two data. This thesis brings to light new information about genomic changes implicated in the development of MPN and MDS, and also underlines the power of applying genome-wide array screening techniques in neoplasias. Rapid advances in molecular techniques and the integration of different genomic data will enable the discovery of the biological contexts of many complex disorders, including myeloid neoplasias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal malnutrition affects every aspect of fetal development. The present study asked the question whether a low-protein diet of the mother could result in motor deficits in the offspring. Further, to examine whether cerebellar pathology was correlated with motor deficits, several parameters of the postnatal development of the cerebellum were assayed. This is especially important because the development of the cerebellum is unique in that the time scale of development is protracted compared with that of the cortex or hippocampus. The most important result of the study is that animals born to protein-deficient mothers showed significant delays in motor development as assessed by rotarod and gait analysis. These animals also showed reduced cell proliferation and reduced thickness in the external granular layer. There was a reduction in the number of calbindin-positive Purkinje cells (PC) and granular cells in the internal granular layer. However, glial fibrillary acidic protein-positive population including Bergmann glia remained unaffected. We therefore conclude that the development of the granular cell layer and the PC is specifically prone to the effects of protein malnutrition potentially due to their protracted developmental period from approximately embryonic day 11 to 13 until about the third postnatal week.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we explore the density of the microglia in the cerebral and cerebellar cortices of individuals with autism to investigate the hypothesis that neuroinflammation is involved in autism. We describe in our findings an increase in microglial density in two disparate cortical regions, frontal insular cortex and visual cortex, in individuals with autism (Tetreault et al., 2012). Our results imply that there is a global increase in the microglial density and neuroinflammation in the cerebral cortex of individuals with autism.

We expanded our cerebellar study to additional neurodevelopmental disorders that exhibit similar behaviors to autism spectrum disorder and have known cerebellar pathology. We subsequently found a more than threefold increase in the microglial density specific to the molecular layer of the cerebellum, which is the region of the Purkinje and parallel fiber synapses, in individuals with autism and Rett syndrome. Moreover, we report that not only is there an increase in microglia density in the molecular layer, the microglial cell bodies are significantly larger in perimeter and area in individuals with autism spectrum disorder and Rett syndrome compared to controls that implies that the microglia are activated. Additionally, an individual with Angelman syndrome and the sibling of an individual with autism have microglial densities similar to the individuals with autism and Rett syndrome. By contrast, an individual with Joubert syndrome, which is a developmental hypoplasia of the cerebellar vermis, had a normal density of microglia, indicating the specific pathology in the cerebellum does not necessarily result in increased microglial densities. We found a significant decrease in Purkinje cells specific to the cerebellar vermis in individuals with autism.

These findings indicate the importance for investigation of the Purkinje synapses in autism and that the relationship between the microglia and the synapses is of great utility in understanding the pathology in autism. Together, these data provide further evidence for the neuroinflammation hypothesis in autism and a basis for future investigation of neuroinflammation in autism. In particular, investigating the function of microglia in modifying synaptic connectivity in the cerebellum may provide key insights into developing therapeutics in autism spectrum disorder.