953 resultados para Cellulose ester


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermal behavior of mixtures composed of cellulose acetate butyrate (CAB), carboxymethylcellulose acetate butyrate (CMCAB), or cellulose acetate phthalate (CAPh), and sorbitan-based surfactants was investigated as a function of mixture composition by means of differential scanning calorimetry (DSC). Surfactants with three different alkyl chain lengths, namely, polyoxyethylenesorbitan monolaurate (Tween 20), polyoxyethylenesorbitan monopalmitate (Tween 40), and polyoxyethylene sorbitan monostearate (Tween 60) were chosen. DSC measurements revealed that Tween 20, 40, and 60 act as plasticizers for CAB, CMCAB, and CAPh (except for Tween 60), leading to a dramatic reduction of glass transition temperature (T-g). The dependence of experimental T-g values on the mixture composition was compared with theoretical predictions using the Fox equation. Plasticization was strongly dependent on mixture composition, surfactant hydrophobic chain length, and type of cellulose ester functional group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pharmaceutical innovations, such as the use of polymers to control drug release, create possibilities for a better action of the drug in the body, which causes a a more effective therapeutic effect and a safer treatment for the patient. In this work, were prepared and characterized matrix tablets of hydroxypropylmethylcellulose (HPMC) containing nimesulide as model drug to evaluate the performance as a controlled release system. HPMC, a cellulose ester, is a hydrophilic polymer that undergoes swelling, i.e., absorbs water and forms a gel layer controlling drug release. The characterization of powders was performed by analysis of particle size and morphology, density, compressibility index determination, flow properties and determination of swelling profile. The tablets were evaluated according to their physical parameters of quality and to the in vitro release of nimesulide, as well as the analysis of the mechanisms of drug release by appropriate mathematical models. The set of results showed that the HPMC/Nimesulide mixture exhibited satisfactory physical characteristics (size, shape, density and flow). The release profile demonstrated an effective control upon drug release in enteric environment and presented more correlation with Korsmeyer-Peppas’ and Weibull’s mathematical models, indicating that the release of nimesulide occurs through the relaxation of the polymer chains

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose fibers obtained from the textile industry (lyocell) were investigated as a potential reinforcement for thermoset phenolic matrices, to improve their mechanical properties. Textile cotton fibers were also considered. The fibers were characterized in terms of their chemical composition and analyzed using TGA, SEM, and X-ray. The thermoset (non-reinforced) and composites (phenolic matrices reinforced with randomly dispersed fibers) were characterized using TG, DSC, SEM, DMTA, the Izod impact strength test, and water absorption capacity analysis. The composites that were reinforced with lyocell fibers exhibited impact strengths of nearly 240 Jm(-1), whereas those reinforced with cotton fibers exhibited impact strengths of up to 773 Jm(-1). In addition to the aspect ratio, the higher crystallinity of cotton fibers compared to lyocell likely plays a role in the impact strength of the composite reinforced by the fibers. The SEM images showed that the porosity of the textile fibers allowed good bulk diffusion of the phenolic resin, which, in turn, led to both good adhesion of fiber to matrix and fewer microvoids at the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two techniques, namely UV-vis- and FTIR spectroscopy, have been employed in order to calculate the degree of substitution (DS) of cellulose carboxylic esters, including acetates, CAs, butyrates, CBs, and hexanoates, CHs. Regarding UV-vis spectroscopy, we have employed a novel approach, based on measuring the dependence of lambda(max) of the intra-molecular charge-transfer bands of polarity probes adsorbed on DS of the ester films (solvatochromism). Additionally, we have revisited the use of FTIR for DS determination. Several methods have been used in order to plot Beer`s law graph, namely: Absorption of KBr pellets, pre-coated with CA: reflectance (DRIFTS) of CAs-KBr solid-solid mixtures with, or without the use of 1.4-dicyanobenzene as an internal reference; reflectance of KBr powder pre-coated with CA. The methods indicated are simple, fast, and accurate, requiring much less ester than the titration method. The probe method is independent of the experimental variables examined. (c) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cellulose acetates, CAs, are extensively employed there is scant information about the systematic dependence of their properties on their degree of substitution, DS; this is the subject of the present work. Nine CAs samples, DS from 0.83 to 3.0 were synthesized; their films were prepared. The following solvatochromic probes have been employed in order to determine the empirical polarity, E (T)(33); ""acidity, alpha""; ""basicity, beta"", and ""dipolarity/polarizability, pi*"" of the casted films: 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl) phenolate, WB; 4-nitroaniline; 4-nitroanisole; 4-nitro-N,N-dimethylaniline; 2,6-diphenyl-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, RB. Additionally, two systems, ethanol plus ethyl acetate (EtOH-EtAc), and cellulose plus cellulose triacetate, CTA, were employed as models for CAs of different DS. Regarding the model systems, the following was observed: (i) For EtOH-EtAc, the dependence of all solvatochromic parameters on the ""equivalent-DS"" of the binary mixture was non-linear because of preferential solvation; (ii) The dependence of E (T)(33) on equivalent DS of the cellulose-CTA films is linear, but the slope is smaller than that of the corresponding plot for CAs. This is attributed to the more efficient hydrogen bonding in the model system, a conclusion corroborated by IR measurements. The dependence of solvatochromic parameters of CAs on their DS is described by the simple equations; a consequence of the substitution of the OH by the ester group. The thermal properties of bulk CAs samples were investigated by DSC and TGA; their dependence on DS is described by simple equations. The relevance of these data to the processing and applications of CAs is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.