938 resultados para Cellules Caco-2
Resumo:
La proprotéine convertase subtilisine/kexine type 9 (PCSK9) favorise la dégradation post-transcriptionnelle du récepteur des lipoprotéines de faible densité (LDLr) dans les hépatocytes et augmente le LDL-cholestérol dans le plasma. Cependant, il n’est pas clair si la PCSK9 joue un rôle dans l’intestin. Dans cette étude, nous caractérisons les variations de la PCSK9 et du LDLr dans les cellules Caco-2/15 différentiées en fonction d’une variété d’effecteurs potentiels. Le cholestérol (100 µM) lié à l’albumine ou présenté en micelles a réduit de façon significative l’expression génique (30%, p<0,05) et l’expression protéique (50%, p<0,05) de la PCSK9. Étonnamment, une diminution similaire dans le LDLr protéique a été enregistrée (45%, p<0,05). Les cellules traitées avec le 25-hydroxycholestérol (50 µM) présentent également des réductions significatives dans l’ARNm (37%, p<0,01) et la protéine (75%, p<0,001) de la PCSK9. Une baisse des expressions génique (30%, p<0,05) et protéique (57%, p<0,01) a également été constatée dans le LDLr. Des diminutions ont aussi été observées pour la HMG CoA réductase et la protéine liant l’élément de réponse aux stérols SREBP-2. Il a été démontré que le SREBP-2 peut activer transcriptionnellement la PCSK9 par le biais de la liaison de SREBP-2 à son élément de réponse aux stérols situé dans la région proximale du promoteur de la PCSK9. Inversement, la déplétion du contenu cellulaire en cholestérol par l’hydroxypropyl-β-cyclodextrine a augmenté l’expression génique de la PCSK9 (20%, p<0,05) et son contenu protéique (540%, p<0,001), en parallèle avec les niveaux protéiques de SREBP-2. L’ajout des acides biliaires taurocholate et déoxycholate dans le milieu apical des cellules intestinales Caco-2/15 a provoqué une baisse d’expression génique (30%, p<0,01) et une hausse d’expression protéique (43%, p<0,01) de la PCSK9 respectivement, probablement via la modulation du FXR (farnesoid X receptor). Ces données combinées semblent donc indiquer que la PCSK9 fonctionne comme un senseur de stérols dans le petit intestin.
Resumo:
Reconhecida como agente de doença humana em 1982, E.coli enterohemorrágica (EHEC) pode causar diarréia sanguinolenta, colite hemorrágica e síndrome hemolítica urêmica (SHU). EHEC constitui um subgrupo especialmente virulento das E.coli produtoras de toxina de Shiga (Stx). O fator crítico da sua virulência é a toxina Shiga, capaz de interromper a síntese proteica da célula eucariótica. São conhecidos dois subgrupos de Stx, Stx1 e Stx2. Stx1 possui duas variantes Stx1c e Stx1d. Stx2 possui muitas variantes. Estudos epidemiológicos sugerem que cepas com os perfis toxigênicos Stx2 ou Stx2/Stx2c seriam mais frequentemente associadas a pacientes com SHU. Além da expressão de Stx, EHEC do sorotipo O157:H7 colonizam a mucosa intestinal induzindo a formação de lesões denominadas attaching/effacing (A/E). Para a produção da lesão A/E, é necessária a presença de uma ilha de patogenicidade cromossômica denominada LEE, composta por cinco operons, LEE 1 a LEE5. Em LEE 5 são codificadas a adesina intimina e o seu receptor Tir, o qual é translocado por um sistema de secreção tipo III (SSTT) e em LEE 4 são codificadas as proteínas secretadas EspA,B e D. Em EHEC O157:H7 são descritos muitos fatores de virulência, codificados em ilhas de patogenicidade, no cromossomo e no megaplasmídio pO157. Bovinos são o principal reservatório deste patógeno e alimentos de origem bovina e produtos contaminados com fezes de bovinos são causadores de surtos epidêmicos. Em nosso país EHEC O157:H7 é isolada do reservatório animal mas é muito rara a sua ocorrência em doença humana. Notamos que nas cepas bovinas predomina Stx2c, enquanto nas cepas humanas predomina o perfil toxigenico Stx2/Stx2c. Quanto a interação com enterocitos humanos cultivados in vitro (linhagem Caco-2), verificamos que tanto cepas bovinas quanto humanas mostram idêntica capacidade de invadir e persistir no compartimento intracelular das células Caco-2. No entanto, em comparação com as cepas humanas, as cepas bovinas mostram uma reduzida capacidade de produzir lesões A/E. Empregamos qPCR para aferir a transcrição de três diferentes locus (eae, espA e tir) situados nos operons LEE4 e LEE5 de cepas bovinas e humanas, durante a infecção de células Caco-2. Verificamos diferenças na expressão dos genes, especialmente espA, entre cepas bovinas e humanas com maior expressão para estas ultimas, em linha com os achados dos testes FAS. Através de clonagem e expressão de proteínas recombinantes, purificamos as proteínas Eae, EspA e Tir e obtivemos anticorpos específicos, empregados para acompanhar a sua expressão ao longo da infecção de células Caco-2, por imunofluorescencia. Verificamos que as três proteínas são detectadas tanto em cepas bovinas quanto humanas, mas nestas ultimas, a marcação é precoce e torna-se mais intensa com o avanço da infecção. Nossos resultados indicam que cepas EHEC O157:H7 isoladas do reservatório bovino em nosso país apresentam diferenças importantes em relação ao perfil toxigenico e a capacidade de indução de lesões A/E, características apontadas na literatura como relevantes para a virulência do micro-organismo. Por outro lado, nossos achados quanto a capacidade de invadir e multiplicar-se no interior de enterócitos pode explicar a persistência do patógeno no reservatório animal e a sua capacidade de transmissão horizontal.
Resumo:
O câncer colo-retal é a terceira neoplasia mais frequente em todo o mundo e a recorrência local e neoplasia refratária são desafios no tratamento do câncer colo-retal após a cirurgia convencional. Com o intuito de controlar a recorrência e aumentar a média de sobrevida dos pacientes, uma estratégia multidisciplinar que combina a radioterapia (RT) e a quimioterapia com o processo cirúrgico tem sido protocolo clínico de escolha. Embora esta combinação seja capaz de otimizar o tratamento, nem todos os pacientes são beneficiados com o protocolo quimio-rádio combinado, uma vez que existem os insucessos terapêuticos relacionados com a incidência de neoplasias secundárias tardias em pacientes que foram submetidos à RT para tratamento de neoplasias anteriores. Além da doença refratária, outro agravante da RT são os efeitos colaterais produzidos pela radiação ionizante (IR), em especial àqueles do trato gastrointestinal. Estes efeitos estão relacionados com alterações da homeostase do epitélio intestinal, através da desorganização dos complexos juncionais. Porém, os mecanismos que medeiam estes efeitos ainda não estão elucidados. Este estudo avaliou as vias de sinalização que medeiam os efeitos da IR em células Caco-2. Foi observado que a IR causa uma desorganização da junção aderente via Src, EGFR e MAPK, sendo estas alterações acompanhadas por desorganização do citoesqueleto de actina em todo o volume celular. Src, EGFR e MAPK participam de maneira diferenciada na modulação destes efeitos. Observamos também que a radiação aumenta a motilidade dessas células via Src e MAPK e não induz alteração na proliferação celular até 48 horas após o tratamento. Este é o primeiro trabalho que correlaciona vias de sobrevivência celular como Src, EGFR e MAPK com alterações nas proteínas de junção aderente, alterações do citoesqueleto e migração celular. Estes eventos são relacionados aos efeitos colaterais primários e tardios induzidos pela IR, e podem favorecer à aquisição de um fenótipo maligno herdável durante o fracionamento de doses na RT, favorecendo a progressão tumoral do câncer colo-retal. Logo, além da correlação das vias de sinalização envolvidas nos eventos induzidos pela IR mostrados neste estudo, os resultados também corroboram para um melhor entendimento da atividade farmacológica dos inibidores químicos utilizados, uma vez que muitos deles encontram-se em fase de ensaios pré-clínicos e clínicos.
Resumo:
Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.
Resumo:
After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degreesC, about 60% of the starting material was converted into nonsoluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW <10 000 De) and 10.0% high-molecular weight products [HMWs; MW greater than or equal to 10000 Dal. The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs <1 000 Da and consisted mainly of non-coloured reaction products. MRPs with MWs between 1000 and 30000 Da were Found in comparatively low yields (about 1.3%). In contrast, about 31.1% of the MRPs exhibited MWs > 30000 Da, amongst which 14.5% showed MWs > 100000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%: respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating three enzyme activities than that of the HMW fraction.
Resumo:
Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexaeri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz(pHS2). Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.
Resumo:
Consumers nowadays are playing an active role in their health-care. A special case is the increasing number of women, who are reluctant to use exogenous hormone therapy for the treatment of menopausal symptoms and are looking for complementary therapies. However, food supplements are not clearly regulated in Europe. The EFSA has only recently begun to address the issues of botanical safety and purity regulation, leading to a variability of content, standardization, dosage, and purity of available products. In this study, isoflavones (puerarin, daidzin, genistin, daidzein, glycitein, genistein, formononetin, prunetin, and biochanin A) from food supplements (n = 15) for menopausal symptoms relief are evaluated and compared with the labelled information. Only four supplements complied with the recommendations made by the EC on the tolerable thresholds. The intestinal bioavailability of these compounds was investigated using Caco-2 cells. The apparent permeability coefficients of the selected isoflavonoids across the Caco-2 cells were affected by the isoflavone concentration and product matrix.
Resumo:
Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.
Resumo:
One common effect of tumor promoters is increased tight junction (TJ) permeability. TJs are responsible for paracellular permeability and integrity of the barrier function. Occludin is one of the main proteins responsible for TJ structure. This study tested the effects of physiological levels of phenol, ammonia, primary bile acids (cholic acid, CA, and chenodeoxycholic acid, CDCA), and secondary bile acids (lithocholic acid, LCA, and deoxycholic acid, DCA) on paracellular permeability using a Caco-2 cell model. Paracellular permeability of Caco-2 monolayers was assessed by transepithelial electrical resistance (TER) and the apical to basolateral flux of [C-14]-mannitol. Secondary, but not primary, bile acids increased permeability as reflected by significantly decreased TER and increased mannitol flux. Both phenol and ammonia also increased permeability. The primary bile acid CA significantly increased occludin expression (P < 0.05), whereas CDCA had no significant effect on occludin expression as compared to the negative control. The secondary bile acids DCA and LCA significantly increased occludin expression (P < 0.05), whereas phenol had no significant effect on the protein expression as compared to the negative control. This suggests that the increased permeability observed with LCA, DCA, phenol, and ammonia was not related to an effect on occludin expression. In conclusion, phenol, ammonia, and secondary bile acids were shown to increase paracellular permeability and reduce epithelial barrier function at doses typical of levels found in fecal samples. The results contribute to the evidence these gut microflora-generated products have tumor-promoting activity.
Resumo:
Two milk components, alpha-lactalbumin (alpha-La) and glycomacropeptide (GMP) may inhibit intestinal infection/intoxification. (3)[H] thymidine-labeled enteropathogenic Escherichia coli (EPEC), Salmonella typhimurium (ATCC 6994) or Shigella flexneri (ATCC 9199) were introduced to CaCo-2 cultures and their association with CaCo-2 cells was assessed. Undigested, pepsin-digested and pepsin- and pancreatin-digested alpha-lactalbumin and glycomacropeptide inhibited association. Thus, milk supplemented with alpha-lactalbumin and glycomacropeptide might be effective in inhibiting associations of the pathogens EPEC, Salmonella typhimurium, and Shigella flexneri to intestinal cells.
Resumo:
The suitability of the caco-2 cell line as a model for studying the long term impact of dietary fatty acids on intestinal lipid handling and chylomicron production was examined. Chronic supplementation of caco-2 cells with palmitic acid (PA) resulted in a lower triacylglycerol secretion than oleic acid (OA). This was coupled with a detrimental effect of PA, but not OA, on transepithelial electrical resistance (TER) measurements, suggesting a loss of structural integrity across the cell monolayer. Addition of OA reversed the adverse effects of PA and stearic acid on TER and increased the ability of cells to synthesise and accumulate lipid, but did not normalise the secretion of lipids by caco-2 cells. Increasing amounts of OA and decreasing amounts of PA in the incubation media markedly improved the ability of cells to synthesise apolipoprotein B and secrete lipids. Real time RT-PCR revealed a down regulation of genes involved in lipoprotein synthesis following PA than OA. Electron microscopy showed adverse effects of PA on cellular morphology consistent with immature enterocytes such as stunted microvilli and poor tight junction formation. In conclusion, previously reported differences in lipoprotein secretion by caco-2 cells supplemented with saturated fatty acids (SFA) and OA may partly reflect early cytotoxic effects of SFA on cellular integrity and function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: In recent years the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In the present study we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Methods: Cytotoxicity studies were performed using MTT, NR and TEER assays whereas 3H-thymidine incorporation and western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Results: Rhein (0.1-10μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as MAP kinase activation; by contrast, at the high concentration (10μg/ml) rhein significantly increased cell proliferation and ERK phosphorylation. Moreover, rhein (0.1-10μg/ml) (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function, (ii) did not induce DNA damage rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and ROS levels induced by H2O2/Fe2+. Conclusions: Rhein, was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism which seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.