999 resultados para Cellular migration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recruitment of a specific cell population after Leishmania infection can influence the outcome of the disease. Cellular migration in response to Leishmania or vector saliva has been reported in air pouch model, however, cellular migration induced by Leishmania associated with host's blood and vector saliva in this model has not been described. Herein we investigated cellular migration into air pouch of hamster after stimulation with combination of L. chagasi and host's blood and Lutzomyia longipalpis saliva. Migration induced by saliva was 3-fold more than those induced by L. chagasi alone. Additionally, L. chagasi associated with blood and saliva induced significantly even more leukocytes into air pouch than Leishmania alone. L. chagasi recruited a diverse cell population; however, most of these cells seem to have not migrated to the inflammatory exudate, remaining in the pouch lining tissue. These results indicate that L. chagasi can reduce leukocyte accumulation to the initial site of infection, and when associated with vector saliva in the presence of blood components, increase the influx of more neutrophils than macrophages, suggesting that the parasite has developed a strategy to minimize the initial inflammatory response, allowing an unlimited progression within the host. This work reinforces the importance of studies on the salivary components of sand fly vectors of leishmaniasis in the transmission process and the establishment of the infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model widely used to study many cellular functions, including differentiation, gene regulation, cellular trafficking and directional migration. Adaptation mechanisms are essential in the regulation of these cellular processes. The misregulation of adaptation components often results in persistent activation of signaling pathways and aberrant cellular responses. Studying adaptation mechanisms regulating cellular migration will be crucial in the treatment of many pathological conditions in which motility plays a central role, such as tumor metastasis and acute inflammation. I will describe two adaptation mechanisms regulating directional migration in Dictyostelium cells. The Extracellular signal Regulated Kinase 2 (ERK2) plays an essential role in Dictyostelium cellular migration. ERK2 stimulates intracellular cAMP accumulation in chemotaxing cells. Aberrant ERK2 regulation results in aberrant cAMP levels and defective directional migration. The MAP Phosphatase with Leucine-rich repeats (MPL1) is crucial for ERK2 adaptation. Cells lacking, MPL1 (mpl1- cells) displayed higher pre-stimulus and persistent post-stimulus ERK2 phosphorylation, defective cAMP production and reduced cellular migration. Reintroduction of a full length Mpl1 into mpl1- cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild type cells (Wt). These results suggest Mpl1 is essential for proper regulation of ERK2 phosphorylation and optimal motility in Dictyostelium cells. Cellular polarization in Dictyostelium cells in part is regulated by the activation of the AGC-related kinase Protein Kinase Related B1 (PKBR1). The PP2A regulatory subunit, B56, and the Glycogen Synthase Kinase 3 (GSK3) are necessary for PKBR1 adaptation in Dictyostelium cells. Cells lacking B56, psrA-cells, exhibited high basal and post-stimulus persistent phosphorylation of PKBR1, increased phosphorylation of PKBR1 substrates, and aberrant motility. PKBR1 adaptation is also regulated by the GSK3. When the levels of active GSK3 are reduced in Wt and psrA- cells, high basal levels of phosphorylated PKBR1 were observed, in a Ras dependent, but B56 independent mechanism. Altogether, PKBR1 adaptation is regulated by at least two independent mechanisms: one by GSK3 and another by PP2A/B56.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

alpha(5)beta(1) integrin from both wild-type CHO cells (CHO-K1) and deficient in proteoglycan biosynthesis (CHO-745) is post-translationally modified by glycosaminoglycan chains. We demonstrated this using [(35)S]sulfate metabolic labeling of the cells, enzymatic degradation, immunoprecipitation reaction with monoclonal antibody, fluorescence microscopy, and flow cytometry. The alpha(5)beta(1) integrin heterodimer is a hybrid proteoglycan containing both chondroitin and heparan sulfate chains. Xyloside inhibition of sulfate incorporation into alpha(5)beta(1) integrin also supports that integrin is a proteoglycan. Also. cells grown with xyloside adhered on fibronectin with no alteration in alpha(5)beta(1) integrin expression. However, haptotactic motility on fibronectin declined in cells grown with xyloside or chlorate as compared with controls. Thus, alpha(5)beta(1) integrin is a proteoglycan and the glycosaminoglycan chains of the integrin influence cell motility on fibronectin. Similar glycosylation of alpha(5)beta(1) integrin was observed in other normal and malignant cells, suggesting that this modification is conserved and important in the function of this integrin. Therefore, these glycosaminoglycan chains of alpha(5)beta(1) integrin are involved in cellular migration on fibronectin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to investigate cellular migration induced by calcium hydroxide to air-pouch cavities in mice. The migration was more specific to neutrophil and was dose and time dependent (peaking 96 h after stimulation). This migration was inhibited by pretreatment with thalidomide, indomethacin, MK886, meloxicam, dexamethasone, MK886 associated with indomethacin, and MK886 associated with indomethacin and dexamethasone. The air-pouch exudate from animals stimulated with calcium hydroxide showed an increase of leukotriene-B4 (LTB4), interleukin-1 beta, tumor necrosis factor alpha (TNF-alpha), cytokine-induced neutrophil chemoattractant (KC), and macrophage inflammatory protein 2 (MIP-2) release. Pretreatment with 3% thioglycollate increased the macrophage population in the air pouch but did not change neutrophil migration. Depleting the resident mast cells through chronic pretreatment with compound 48/80 did not alter neutrophil migration in response to calcium hydroxide. It was possible to conclude that calcium hydroxide-induced neutrophil migration to the air-pouch cavity in mice is mediated by LTB4, TNF-alpha, KC, MIP-2, and prostaglandins, but it was not dependent on macrophages or mast cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular migration is an integral component of many biological processes including immune function, wound healing and cancer cell metastasis. A complete model illustrating the mechanism by which cells accomplish movement is still lacking. Exploring the affects of various drugs on cell motility may be instrumental in discovering new proteins which mediate cell movement. This project aims ultimately to characterize the molecular target of the drug Cucurbitacin-I, a natural plant product. This drug has been shown to inhibit migration of epithelial sheets and may have anti-tumor activity. In this paper, we show that Cucurbitacin-I inhibits the migration of MDCK and B16F1 cells. The drug also affects the integrity of the actin cytoskeleton of these cells by indirectly stabilizing filamentous actin. Cucurbitacin-I does not, however, have an effect on the motility or cytoskeletal morphology of the soil amoeba, Dictyostelium discoidium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aims of the present study were to investigate the effect of low-intensity laser irradiation on the total number of mast cells as well as the percentage of degranulation in human gingiva. Blood vessel dilation was also evaluated. Background Data: It has been proposed that low-intensity laser irradiation can ameliorate pain, swelling, and inflammation. In periodontal tissue, mast cells may influence either the destructive events or the defense mechanism against periodontal disease via secretion of cytokines and through cellular migration to improve the healing process. Mast cells play an important role in the inflammatory process. Methods: Twenty patients with gingival enlargement indicated for gingivectomy were selected. Gingival fragments were obtained from each patient and divided into three different groups before surgery. One fragment was removed without any irradiation. The two others were submitted to punctual irradiation with an energy density of 8 J/cm(2) at an output power of 50 mW at 36 Hz for 36 sec before gingivectomy. Nondegranulated and degranulated mast cells were counted in five areas of the gingival fragment connective tissue. Major and minor diameters of the blood vessels were also measured. Results: Both red and infrared radiation promoted a significant increase in mast cell degranulation compared to controls; however, no statistically significant differences (p > 0.05) were observed between the irradiated groups. No significant differences among the groups were observed regarding blood vessel size. Conclusion: The results suggests that red and infrared wavelengths promote mast cell degranulation in human gingival tissue, although no dilation of blood vessels was observed. The effects of premature degranulation of mast cells in human tissue and the laser radiation protocol applied in this study encourage further investigations to extend these results into clinical practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

American cutaneous leishmaniasis (ACL) presents distinct active clinical forms with different grades of severity, known as localised (LCL), intermediate (ICL) and diffuse (DCL) cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th)1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC) migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemokines constitute an expanding protein family of over 40 members which exhibit a wide variety of biological activities and are involved in many normal physiological processes, such as cellular migration, differentiation and activation, but also in pathological situations, such as inflammation and metastasis. Over the last few years, we have developed methods to manufacture long synthetic peptides of up to 130 residues, and to achieve the formation of native-like cysteine pairings. This ability prompted us to undertake the total chemical synthesis of chemokines. So far, we have successfully produced over 30 chemokine species, which exhibit biological activities similar to, or greater than, those reported by others. Chemical synthesis offers a clear advantage over recombinant technologies for the introduction of fluorochromes and haptens at molecularly defined positions. In addition, approval of chemically synthesized products for use in humans is straightforward compared with material produced by biological methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium (Ca2+) is involved in the regulation of variety of cellular functions including hallmarks of cancer development such as cellular migration and cellular proliferation. Store-operated calcium entry (SOCE) is a central mechanism in cellular calcium signaling and in maintaining the cellular calcium balance. Stromal interaction molecule 1(STIM1) has been identified as an important constituent of SOCE. In this thesis , the STIM1 proteins are studied for their importance in cellular processes and their effects on the expression of S1P1, S1P2, S1P3, VEGFR-2, and TRPC-1 in follicular ML-1 thyroid cancer cells. The results show the importance of STIM1 proteins in SOCE in these cells. The SOCE is significantly reduced in the STIM1 knockdown cells. The results also show the importance of STIM1 proteins in the expression of S1P2 and VEGFR-2 in these cells, as knockdown of STIM1 was shown to upregulate the expression of S1P2 and VEGFR-2. The migration and proliferation is also considerably reduced in the cells in which STIM1 has been knocked down showing the significance of STIM1 in the migration and proliferation in these cells.