998 resultados para Cell sheet


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell Sheets of hASCs (hASCs-CS) have been previously proposed for wound healing applications(1, 2) and despite the concern for production time reduction, the possibility of having these hASCs-CS off-the-shelf is appealing. The goal of this work was to define a cryopreservation methodology allowing to preserve cells viability and the properties CS matrix. hASCs-CS obtained from three different donors were created in UP-cell thermoresponsive dishes(Nunc, Germany) as previously reported(1,2). Different cryopreservation conditions were considered: i)FBS plus DMSO(5% and10%); ii)0.4M of Trehalose plus DMSO (5% and 10%); iii)cryosolution PLL (Akron Biotech, USA); and iv)vitrification. The cryopreservation effect was first assessed for cellular viability by flow cytometry using 7-AAD, and after dissociating the hASCs-CS with collagenase and trypsin-EDTA 0.25%. The expression (RT-PCR) and deposition (western blot and immunocytochemistry) of collagen type I, laminin and fibronectin, and the organization (TEM) of the extracellular matrix was further assessed before and after hASCs-CS cryopreservation to determine a potential effect of the method over matrix composition and integrity. The obtained results confirmed that cell viability is affected by the cryopreservation methodology, as shown before for different CS(3). Interestingly, the matrix properties were not significantly altered and the typical cell sheetâ s easiness of manipulation for transplantation was not lost.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell/cell-extracellular matrix (ECM) dynamic interactions appear to have a major role in regulating communication through soluble signaling, directing cell binding and activating substrates that participate in the highly organized wound healing process. Moreover, these interactions are also crucial for in vitro mimicking cutaneous physiology. Herein we explore cell sheet (CS) engineering to create cellular constructs formed by keratinocytes (hKC), fibroblasts (hDFB) and dermal microvascular endothelial cells (hDMEC), to target skin wound healing but also the in vitro recreation of relevant models. Taking advantage of temperature-responsive culture surfaces, which allow harvesting cultured cells as intact sheets along with the deposited native ECM, varied combinations of homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed. Constructs combining one CS of keratinocytes as an epidermis-like layer plus a vascularized dermis composed by hDFB and hDMECs were assembled as skin analogues for advancing in vitro testing. Simultaneously both hKC and hDMEC were shown to significantly contribute to the re-epithelialization of full-thickness mice skin wounds by promoting an early epithelial coverage, while hDMEC significantly lead to increased vessels density, incorporating the neovasculature. Thus, although determined by the cellular nature of the constructs, these outcomes demonstrated that CS engineering appear as an unique technology that open the possibility to create numerous combinations of 3D constructs to target defective wound healing as well as the construction of in vitro models to further mimic cutaneous functions crucial for drug screening and cosmetic testing assays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell sheet (CS) engineering, taking advantage of cellular self-matrix organized as in native tissue, has been largely explored, including by us, for different purposes [1â 3]. Herein we propose for the ï¬ rst time, the use of human adipose stem cells (hASCs)-derived CS to create adipose tissue analogues with different levels of maturation. hASCs were cultured on UpCellTM thermo-responsive dishes for 1, 3 and 5 days under basal conditions previously established by us [3]. The inï¬ uence of pre-differentiation time and respective cell number, over CS stability and differentiation was assessed. Mechanically robust CS were only obtained with 5 days pre-differentiation period. Adipogenesis was followed along the culture assessing the variation of expression of mesenchymal (CD73, CD105 but not CD90) and adipogenic (PPARg, FABP4 and LPL) markers by ï¬ ow cytometry, immunocytochemistry and RT-PCR. Increased ratio of differentiated cells was achieved for longer pre-differentiation periods, while maturation degree was modulated by the maintenance medium. Independently of the overall CS differentiation/maturation level, 3D constructs were fabricated by stacking and further culturing 3 CS. Thus, by varying the culture conditions, different 3D adipose tissue-like microenvironments were recreated, enabling future development of new tissue engineering strategies, as well as further study of adipose tissue role in the regeneration of different tissues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multilayer systems obtained using the Layer-by-Layer (LbL) technology have been proposed for a variety of biomedical applications in tissue engineering and regenerative medicine. LbL assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly-ordered nanostructured coatings over almost any type of substrates and with a wide range of substances. The incorporation of polyoxometalate (POM) inorganic salts as constituents of the layers presents a possibility of promoting light-stimuli responses in LbL substrates. We propose the design of a biocompatible photo-responsive multilayer system based on a Preyssler-type POM ([NaP5W30O110]14â ) and a natural origin polymer, chitosan, using the LbL methodology. The photo-reduction properties of the POM allow the spatially controlled disruption of the assembled layers due to the weakening of the electrostatic interactions between the layers. This system has found applicability in detaching devices, such as the cell sheet technology, which may solve the drawbacks actually found in other cell treatment proposals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robotisoitu hitsaus tarjoaa mahdollisuuden tasaiseen laatuun ja miehittämättömään tuotantoon. Se ei ole kuitenkaan yhtä joustava menetelmä kuin käsinhitsaus ja siihen liittyy yleensä paljon asetus- ja ohjelmointikustannuksia. Tässä diplomityössä selvitetään, mitkä ovat robotisoidun ohutlevyjen hitsauksen erityispiirteet ja mitä seikkoja tulee huomioida robotisoidun hitsaussolun kehittämisessä. Ohutlevytuotteiden tulee soveltua robotisoituun hitsaukseen. Ne ovat ohuita ja taipuisia kappaleita, joten liitosten tarkka kohdistaminen voi olla vaikeaa. Tämä edellyttää suunnittelulta menetelmän erityispiirteiden ymmärtämistä ja valmistukselta erinomaista laaduntuottokykyä. Materiaaleina ohutlevyt ovat pääosin hyvin hitsattavia kaikilla tavanomaisilla menetelmillä.Haitallisten muodonmuutosten välttämiseksi kannattaa suosia hitsausprosesseja, joilla on mahdollisimman pieni lämmöntuonti. Saavutettu hitsausnopeus riippuu prosessin lisäksi myös liitosten kokoonpanon tarkkuudesta. Työnkokeellisessa osassa selvitetään erään robottihitsaussolun kehitystyötä. Tavoitteena oli nostaa solun nopeus ja kapasiteetti vastaamaan yrityksen muun tuotannon tasoa. Solua varten kehitettiin erityinen automaattisesti toimiva hitsauskiinnitin, jonka toimintaperiaate esitellään. Kiinnitin kohdistaaohutlevystä valmistetun kotelon pohjan sivut riittävän tarkasti, jotta ne voidaan hitsata robotilla.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide. We report that the fibrils containing the RGD sequence are bioactive and that these fibrils interact specifically with cells via the RGD group displayed on the fibril surface. As the design of such functionalized fibrils can be systematically altered, these findings suggest that it will be possible to generate nanomaterials based on amyloid fibrils that are tailored to promote interactions with a wide variety of cell types. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc ¼ N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows b-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates b-sheet formation by both peptides at sufficiently high concentration. Strong alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and smallangle X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel b-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2–15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on β-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1–1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Derivatives of fluorophore FITC (fluorescein isothiocyanate) are widely used in bioassays to label proteins and cells. An N-terminal leucine dipeptide is attached to FITC, and we show that this simple conjugate molecule is cytocompatible and is uptaken by cells (human dermal and corneal fibroblasts) in contrast to FITC itself. Co-localisation shows that FITC-LL segregates in peri-nuclear and intracellular vesicle regions. Above a critical aggregation concentration, the conjugate is shown to self-assemble into beta-sheet nanostructures comprising molecular bilayers.