976 resultados para Cell Fate Determination


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SPINK5 (serine protease inhibitor Kazal-type 5) encodes the putative proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor). In skin, LEKTI expression is restricted to the stratum granulosum of the epidermis and the inner root sheath of hair follicles. Mutations that create premature termination codons in SPINK5 have been reported as the cause of Netherton syndrome (NS), a human autosomal recessive disorder characterized by congenital ichthyosis with defective cornification, a specific hair shaft defect known as trichorrexis invaginata or 'bamboo hair', and severe atopic manifestations, including atopic dermatitis and hayfever. Althought recombinant human LEKTI inhibits a battery of serine proteases including plasmin, trypsin, subtilisin A, cathepsin G, and elastase, the precise role of LEKTI in the physiopathology of NS remains unclear. Spink5−/− mice display a NS-like phenotype. Surprisingly, a psoriasis-like hyperplasia, basement membrane breakdown followed by evagination of spindle-shaped epidermal cells into the dermal compartment, and the presence of numerous sweat gland-like structures were also observed when the skin of Spink5−/− newborn mice, which die at birth, was transplanted onto the back of nude mice. Collectively, these observations suggest that LEKTI may play a role on cell proliferation and stem cell fate. Our current work aims at elucidating the mechanisms by which LEKTI impact these biological processes. Using keratinocyte stem cells obtained from NS patients, we have identified LEKTI as a regulator node in several signaling pathways involved in stem cell behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and inititate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch-CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of T cells from pluripotent stem cells involves a coordinated series of lineage-commitment steps. Common lymphoid precursors in the fetal liver or adult bone marrow must first choose between a T, B or NK cell fate. Committed T cell precursors in the thymus then differentiate into cells committed to the alphabeta or gammadelta lineages. Recent advances have been made in our understanding of the mechanisms underlying T cell fate specification and alphabeta/gammadelta lineage divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may co-reside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently reported that Notch 1, a member of the Notch multigene family, is essential for the development of murine T cells. Using a mouse model in which Notch 1 is inactivated in bone marrow (BM) precursors we have shown that B cells instead of T cells are found in the thymus of BM chimeras. However, it is not clear whether these B cells develop by default from a common lymphoid precursor due to the absence of Notch 1 signaling, or whether they arise as a result of perturbed migration of BM-derived B cells and/or altered homeostasis of normal resident thymic B cells. In this report we show that Notch 1-deficient thymic B cells resemble BM B cells in phenotype and turnover kinetics and are located predominantly in the medulla and corticomedullary junction. Peripheral blood lymphocyte analysis shows no evidence of recirculating Notch1(-/)- BM B cells. Furthermore, lack of T cell development is not due to a failure of Notch1(-/)- precursors to home to the thymus, as even after intrathymic reconstitution with BM cells, B cells instead of T cells develop from Notch 1-deficient precursors. Taken together, these results provide evidence for de novo ectopic B cell development in the thymus, and support the hypothesis that in the absence of Notch 1 common lymphoid precursors adopt the default cell fate and develop into B cells instead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signalng sources share the same receptor and provides the tools for their characterization.