923 resultados para Catenin Complexes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, binds directly to epithelial cadherin (E-cadherin). This binding is mediated by the large cytoplasmic loop of PS1 and requires the membrane-proximal cytoplasmic sequence 604–615 of mature E-cadherin. This sequence is also required for E-cadherin binding of protein p120, a known regulator of cadherin-mediated cell adhesion. Using wild-type and PS1 knockout cells, we found that increasing PS1 levels suppresses p120/E-cadherin binding, and increasing p120 levels suppresses PS1/E-cadherin binding. Thus PS1 and p120 bind to and mutually compete for cellular E-cadherin. Furthermore, PS1 stimulates E-cadherin binding to β- and γ-catenin, promotes cytoskeletal association of the cadherin/catenin complexes, and increases Ca2+-dependent cell–cell aggregation. Remarkably, PS1 familial Alzheimer disease mutant ΔE9 increased neither the levels of cadherin/catenin complexes nor cell aggregation, suggesting that this familial Alzheimer disease mutation interferes with cadherin-based cell–cell adhesion. These data identify PS1 as an E-cadherin-binding protein and a regulator of E-cadherin function in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton [1-4]. In the context of stable adhesion [1], cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis [2]. Here actin polymerization has been proposed to drive cell surfaces together [5], although F-actin reorganization also occurs as cell contacts mature [6]. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere [7]. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120(ctn) to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu(586)-Leu(587), termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120(ctn) was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120(ctn) in polarized cells is contextual and confined to the basolateral membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS: A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.¦METHODS AND RESULTS: Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1.¦CONCLUSION: Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations of the human adenomatosis polyposis coli (APC) gene are associated with the development of familial as well as sporadic intestinal neoplasia. To examine the in vivo function of APC, 129/Sv embryonic stem (ES) cells were transfected with DNA encoding the wild-type human protein under the control of a promoter that is active in all four of the small intestine's principal epithelial lineages during their migration-associated differentiation. ES-APC cells were then introduced into C57BL/6-ROSA26 blastocysts. Analyses of adult B6-ROSA26<-->129/Sv-APC chimeric mice revealed that forced expression of APC results in markedly disordered cell migration. When compared with the effects of forced expression of E-cadherin, the data suggest that APC-catenin and E-cadherin-catenin complexes have opposing effects on intestinal epithelial cell movement/adhesiveness; augmentation of E-cadherin-beta-catenin complexes produces a highly ordered, "adhesive" migration, whereas augmentation of APC-beta-catenin complexes produces a disordered, nonadhesive migratory phenotype. We propose that APC mutations may promote tumorigenesis by increasing the relative activity of cadherin-catenin complexes, resulting in enhanced adhesiveness and functional anchorage of initiated cells within the intestinal crypt. Our studies also indicate that chimeric mice generated from B6-ROSA26 blastocysts and genetically manipulated ES cells should be useful for auditing gene function in the gastrointestinal tract and in other tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120(ctn) interacts with E-cadherin, because p120(ctn) localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine phosphorylation of ß-catenin, a component of adhesion complexes and the Wnt pathway, affects cell adhesion, migration and gene transcription. By reducing ßcatenin availability using shRNA-mediated gene silencing or expression of intracellular N-cadherin, we show that ß-catenin is required for axon growth downstream of Brain Derived Neurotrophic Factor (BDNF) and Hepatocyte Growth Factor (HGF) signalling. We demonstrate that receptor tyrosine kinases (RTK) Trk and Met interact with and phosphorylate ß-catenin. Neurotrophins (NT) stimulation of Trk receptors results in phosphorylation of ß-catenin at residue Y654 and increased axon growth and branching. Conversely, pharmacological inhibition of Trk or a Y654F mutant blocks these effects. ß-catenin phospho(P)-Y654 colocalizes with the cytoskeleton at growth cones. However, HGF that also increases axon growth and branching, induces ß-catenin phosphorylation at Y142 and a nuclear localization. Interestingly, dominant negative ΔN-TCF4 abolishes the effects of HGF in axon growth and branching, but not of NT. We conclude that NT and HGF signalling differentially phosphorylate ß-catenin, targeting ß-catenin to distinct compartments to regulate axon morphogenesis by TCF4-transcription-dependent and independent mechanisms. These results place ß-catenin downstream of growth factor/RTK signalling in axon differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt and its intracellular effector β-catenin regulate developmental and oncogenic processes. Using expression cloning to identify novel components of the Wnt pathway, we isolated casein kinase Iɛ (CKIɛ). CKIɛ mimicked Wnt in inducing a secondary axis in Xenopus, stabilizing β-catenin, and stimulating gene transcription in cells. Inhibition of endogenous CKIɛ by kinase-defective CKIɛ or CKIɛ antisense-oligonucleotides attenuated Wnt signaling. CKIɛ was in a complex with axin and other downstream components of the Wnt pathway, including Dishevelled. CKIɛ appears to be a positive regulator of the pathway and a link between upstream signals and the complexes that regulate β-catenin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

β-catenin has functions as both an adhesion and a signaling molecule. Disruption of these functions through mutations of the β-catenin gene (CTNNB1) may be important in the development of colorectal tumors. We examined the entire coding sequence of β-catenin by reverse transcriptase–PCR (RT-PCR) and direct sequencing of 23 human colorectal cancer cell lines from 21 patients. In two cell lines, there was apparent instability of the β-catenin mRNA. Five different mutations (26%) were found in the remaining 21cell lines (from 19 patients). A three-base deletion (codon 45) was identified in the cell line HCT 116, whereas cell lines SW 48, HCA 46, CACO 2, and Colo 201 each contained single-base missense mutations (codons 33, 183, 245, and 287, respectively). All 23 cell lines had full-length β-catenin protein that was detectable by Western blotting and that coprecipitated with E-cadherin. In three of the cell lines with CTNNB1 mutations, complexes of β-catenin with α-catenin and APC were detectable. In SW48 and HCA 46, however, we did not detect complexes of β-catenin protein with α-catenin and APC, respectively. These results show that selection of CTNNB1 mutations occurs in up to 26% of colorectal cancers from which cell lines are derived. In these cases, mutation selection is probably for altered β-catenin function, which may significantly alter intracellular signaling and intercellular adhesion and may serve as a complement to APC mutations in the early stages of tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the effect of N-cadherin, and its free or membrane-anchored cytoplasmic domain, on the level and localization of β-catenin and on its ability to induce lymphocyte enhancer-binding factor 1 (LEF-1)-responsive transactivation. These cadherin derivatives formed complexes with β-catenin and protected it from degradation. N-cadherin directed β-catenin into adherens junctions, and the chimeric protein induced diffuse distribution of β-catenin along the membrane whereas the cytoplasmic domain of N-cadherin colocalized with β-catenin in the nucleus. Cotransfection of β-catenin and LEF-1 into Chinese hamster ovary cells induced transactivation of a LEF-1 reporter, which was blocked by the N-cadherin-derived molecules. Expression of N-cadherin and an interleukin 2 receptor/cadherin chimera in SW480 cells relocated β-catenin from the nucleus to the plasma membrane and reduced transactivation. The cytoplasmic tails of N- or E-cadherin colocalized with β-catenin in the nucleus, and suppressed the constitutive LEF-1-mediated transactivation, by blocking β-catenin–LEF-1 interaction. Moreover, the 72 C-terminal amino acids of N-cadherin stabilized β-catenin and reduced its transactivation potential. These results indicate that β-catenin binding to the cadherin cytoplasmic tail either in the membrane, or in the nucleus, can inhibit β-catenin degradation and efficiently block its transactivation capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drosophila Armadillo and its mammalian homologue β-catenin are scaffolding proteins involved in the assembly of multiprotein complexes with diverse biological roles. They mediate adherens junction assembly, thus determining tissue architecture, and also transduce Wnt/Wingless intercellular signals, which regulate embryonic cell fates and, if inappropriately activated, contribute to tumorigenesis. To learn more about Armadillo/β-catenin's scaffolding function, we examined in detail its interaction with one of its protein targets, cadherin. We utilized two assay systems: the yeast two-hybrid system to study cadherin binding in the absence of Armadillo/β-catenin's other protein partners, and mammalian cells where interactions were assessed in their presence. We found that segments of the cadherin cytoplasmic tail as small as 23 amino acids bind Armadillo or β-catenin in yeast, whereas a slightly longer region is required for binding in mammalian cells. We used mutagenesis to identify critical amino acids required for cadherin interaction with Armadillo/β-catenin. Expression of such short cadherin sequences in mammalian cells did not affect adherens junctions but effectively inhibited β-catenin–mediated signaling. This suggests that the interaction between β-catenin and T cell factor family transcription factors is a sensitive target for disruption, making the use of analogues of these cadherin derivatives a potentially useful means to suppress tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcohol abuse causes neurotoxicity and the development of tolerance and dependence. At the molecular level, however, knowledge about mechanisms underlying alcoholism remains limited. In this study we examined the superior frontal cortex, one of the most vulnerable brain regions, of alcoholics and of age- and gender-matched control subjects by means of antibody microarrays and Western blot analyses, and identified an up-regulation of beta-catenin level in the superior frontal cortex of alcoholics. Beta-catenin is the orthologue of the Drosophila armadillo segment polarity gene and a down stream component of the Wnt and Akt signaling pathway. Beta-catenin was identified as a cell adhesion molecule of the cadherin family which binds to the actin cytoskeleton. Genetic and biochemical analyses also found that beta-catenin can be translocated from the cytoplasm to the nucleus and acts as a transcription factor. In addition, electron microscopy performed on rat brain tissue sections has localized the beta-catenin and cadherin complexes to the synapses where they border the active zone. Because of the multi-functional role of beta-catenin in the nervous system, this study provides the premise for further investigation of mechanisms underlying the up-regulation of beta-catenin in alcoholism, which may have considerable pathogenic and therapeutic relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of S,S-ethylenediaminedisuccinic acid (edds) on the quenching of metal-catalyzed (metal = Mn, Fe, Co, Ni, Cu, Zn) oxidation of ascorbic acid was tested in vitro via oxidation of the fluorescent probe 1,2,3-dihydrorhodamine dihydrochloride. The pro-oxidant activity of iron was not fully suppressed, even at a four-fold molar excess of the ligand. The effect of serum on the toxicity to peripheral blood mononuclear cells (PBMC) and K562 cells was investigated. The cytotoxic effect of Fe-edds was abrogated in the presence of Trolox or serum proteins. The probable pathways of cell toxicity were investigated through blocking of the monocarboxylate transporters (MCT) in association with cell cycle studies by flow cytometry. Cells treated with metal complexes and alpha-cyano-4-hydroxycinnamic acid, a known MCT inhibitor, showed recovery of viability, suggesting that MCT proteins may be involved in the internalization of metal-edds complexes. The free acid induced cell cycle arrest in G0/G1 (PBMC) and S (K562) phases, suggesting direct DNA damage or interference in DNA replication.